基本电子管一般有三个极,一个阴极(K)用来发射电子,一个阳极(A)用来吸收阴极所发射的电子,一个栅极(G)用来控制流到阳极的电子流量.阴极发射电子的基本条件是:阴极本身必须具有相当的热量,阴极又分两种,一种是直热式,它是由电流直接通过阴极使阴极发热而发射电子;另一种称旁热式阴极,其结构一般是一个空心金属管,管内装有绕成螺线形的灯丝,加上灯丝电压使灯丝发热从而使阴极发热而发射电子,现在日常用的多半是这种电子管(如图所示).由阴极发射出来的电子穿过栅极金属丝间的空隙而达到阳极,由于栅极比阳极离阴极近得多,因而改变栅极电位对阳极电流的影响比改变阳极电压时大得多,这就是三极管的放大作用.换句话说就是栅极电压对阳极电流的控制作用.我们用一个参数称跨导(S)来表示.另外还有一个参数μ来描述电子管的放大系数,它的意义是说明了栅极电压控制阳流的能力比阳极电压对阳流的作用大多少倍.nbsp;为了提高电子管的放大系数,在三极管的阳极和控制栅极之间另外加入一个栅极称之为帘栅极,而构成四极管,由于帘栅极具有比阴极高很多的正电压,因此也是一个能力很强的加速电极,它使得电子以更高的速度迅速到达阳极,这样控制栅极的控制作用变得更为显著.因此比三极管具有更大的放大系数.但是由于帘栅极对电子的加速作用,高速运动的电子打到阳极,这些高速电子的动能很大,将从阳极上打出所谓二次电子,这些二次电子有些将被帘栅吸收形成帘栅电流,使帘栅电流上升这会导致帘栅电压的下降,从而导致阳极电流的下降,为此四极管的放大系数受到一定而限制.nbsp;为了解决上述矛盾,在四极管帘栅极外的两侧再加入一对与阴极相连的集射极,由于集射极的电位与阴极相同,所以对电子有排斥作用,使得电子在通过帘栅极之后在集射极的作用下按一定方向前进并形成扁形射束,这扁形电子射束的电子密度很大,从而形成了一个低压区,从阳极上打出来的二次电子受到这个低压区的排斥作用而被推回到阳极,从而使帘栅电流大大减少,电子管的放大能力得而加强.这种电子管我们称为束射四极管,束射四极管不但放大系数较三极管为高,而且其阳极面积较大,允许通过较大的电流,因此现在的功放机常用到它作为功率放大nbsp;电子技术发展的里程碑——晶体管nbsp;谈到晶体管,也许很多人会感到很陌生.然而,就是小小的晶体管的发明给电子学带来了一场革命.这场革命发展之迅速、波及范围之广泛,完全超出了人们的想象.nbsp;现在晶体管和微型电路几乎无所不能,无处不在.小到人们日常生活中的助听器、收音机、录音机和电视机,大到实验室仪器、工业生产及国防设备、计算机、机器人、宇宙飞盘等,都离不开晶体管.可以毫不夸张地说,晶体管奠定了现代电子技术的基础.nbsp;可是,晶体管究竟是什么样的?它又是怎样发明出来的?必不可少的一步——电子管的问世1883年,闻名世界的大发明家爱迪生发明了第一只白炽照明灯.电灯的发明,给一直生活在黑暗之中的人们送去了光明和温暖.就在这个过程中,爱迪生还发现了一个奇特的现象:一块烧红的铁会散发出电子云.后人称之为爱迪生效应.1884年的一天,一位叫弗莱明的英国发明家,远涉重洋,风尘仆仆地来到美国,拜会了他慕名已久的爱迪生.就在这两位大发明家的会见中,爱迪生再次展示了爱迪生效应.遗憾的是,由于当时技术条件的限制,不论是爱迪生,还是弗莱明,都对这一效应百思不得其解,不知道利用这一效应能做些什么.nbsp;20世纪初,有线电报问世了.这一发明给人们带来了很多便利.有线电报发出的信号是高频无线电波,收信台必须进行整流,才能从听筒中听出声音来.当时的整流器结构复杂,功效又差,亟待改进.正在研究高频整流器的弗莱明灵机一动,他想,如果把爱迪生效应应用在检波器上,结果会怎样呢?就这样,引出了一个新的发明.nbsp;1904年弗莱明在真空中加热的电丝(灯丝)前加了一块板极,从而发明了第一只电子管.他把这种装有两个极的电子管称为二极管.利用新发明的电子管,可以给电流整流,使电话受话器或其它记录装置工作起来.如今,打开一架普通的电子管收音机,我们很容易看到灯丝烧得红红的电子管.它是电子设备工作的心脏,是电子工业发展的起点.nbsp;弗莱明的二极管是一项崭新的发明.它在实验室中工作得非常好.可是,不知为什么,它在实际用于检波器上却很不成功,还不如同时发明的矿石。
灯丝把阴极加热,阴极在热场作应下产生自由电子。
电子带负电,电子管阳极(屏极)为正电压,电子流在真空中向正电压方向流去。
栅极、(帘栅极或控制栅极)的变法的电压控制电子流的大小。
和晶体管相比;
a.阴极相当于发射极。
b.栅极相当于基极。
c.阳极相当于集电极。
电子管最大的特点是;
1.可在里面做出很多控制极,俗称四极管五极管等。
2.金属封装的电子管可不受宇宙射线和强磁场干扰,在一些航天设备中至今还在使用。
3.由于电子流是在真空中运动,速度快,通带宽,嘈声小。
电子管是利用静电场对电子流的控制来工作的,是个电压控制元件,与MOS场效应管的工作原理有些相似。
所以输入阻抗极高,输入信号只要电压,不需要电流;晶体管是利用半导体器件内杂质浓度的差异,用电流分配关系来工作的,是个电流控制元件。输入信号需要电流,所以输入阻抗低。
电子管体积大,消耗功率大(要灯丝加热),在一般的电子设备中已由半导体器件所取代。但在微波、高功率等等设备中,还得用电子管。
在数字设备中,肯定是用大规模集成电路,不会是用电子管。所以笔记本中不会有电子管。
看了你回答别人的问题,估计你学文科的,长篇大论讲理论也许不合适。
就简单说吧。 1、金属里是有电子的,在很高的电压作用下有可能把冷金属里的电子拉出来,在不太高的电压作用下也可能把热金属里的电子拉出来。
现在我们把两块金属封在一个真空的玻璃管里,一块加热一块不加热,那么我们就可以轻易把热金属里的电子拉向冷金属,而很难把冷金属的电子拉向热金属。这样就使得这个管子具有了单向导电的特性,电子从热金属飞向冷金属,在物理上就定义为电流从冷金属流向了热金属。
使用真空的原因是为了避免空气分子对电子运动造成不利影响。 以上就是电子二极管的原理,它的特性是单向导电,热金属为阴极(负极),冷金属为阳极(正极)。
阴极通常是用灯丝或者旁边装有灯丝的金属片制作的,而阳极则是普通金属片。 2、如果我们在阳极和阴极之间接上方向正确的电压让它通电,同时在两者之间很靠近阴极的地方再加一个金属片(这个金属片名字叫栅极),在栅极上面加一个很小的与阳极电压相反的电压,虽然它电压比较低,但是由于它离阴极很近,电压又正好相反,所以它会严重地阻碍电子从阴极流向阳极,也就是减小从阳极流向阴极的电流。
当栅极上电压有变化时,从阳极流向阴极的电流也会变化。由于栅极离阴极很近,它上面一点微小的电压变化就会导致阳极和阴极之间电流的巨大变化,如果在阳极和阴极的电路回路里串联一个电阻,则电阻上的电压也会有巨大的变化。
现在你看到了,栅极上电压的微小变化引起了电阻上电压的巨大变化,而电压的变化就是信号,于是信号被放大了。这种有三个电极的电子管叫电子三极管,它的特性就是有放大作用。
还有更多种类的电子管,但基本上都是在电子三极管基础上改进的,其工作原理和电子三极管是一样的。
世界上第一台电子计算机的逻辑元件是:A电子管 第一代电子管计算机 (1945-1956) 1946年2月14日,标志现代计算机诞生的ENIAC(Electronic Numerical Integrator and Computer)在费城公诸于世。ENIAC代表了计算机发展史上的里程碑,它通过不同部分之间的重新接线编程,还拥有并行计算能力。ENIAC由美国政府和宾夕法尼亚大学合作开发,使用了18000个电子管,70000个电阻器,有5百万个焊接点,耗电160千瓦,其运算速度为每秒5000次。 第一代计算机的特点是操作指令是为特定任务而编制的,每种机器有各自不同的机器语言,功能受到限制,速度也慢。另一个明显特征是使用真空电子管和磁鼓储存数据 . 第二代晶体管计算机 (1956-1963) 1948年,晶体管发明代替了体积庞大电子管,电子设备的体积不断减小。1956年,晶体管在计算机中使用,晶体管和磁芯存储器导致了第二代计算机的产生。第二代计算机体积小、速度快、功耗低、性能更稳定。1960年,出现了一些成功地用在商业领域、大学和政府部门的第二代计算机。第二代计算机用晶体管代替电子管,还有现代计算机的一些部件:打印机、磁带、磁盘、内存、操作系统等。计算机中存储的程序使得计算机有很好的适应性,可以更有效地用于商业用途。在这一时期出现了更高级的COBOL和FORTRAN等语言,使计算机编程更容易。新的职业(程序员、分析员和计算机系统专家)和整个软件产业由此诞生。 第三代集成电路计算机 (1964-1971) 1958年德州仪器的工程师Jack Kilby发明了集成电路(IC),将三种电子元件结合到一片小小的硅片上。更多的元件集成到单一的半导体芯片上,计算机变得更小,功耗更低,速度更快。这一时期的发展还包括使用了操作系统,使得计算机在中心程序的控制协调下可以同时运行许多不同的程序。 第四代大规模集成电路计算机 (1971-现在) 大规模集成电路 (LSI) 可以在一个芯片上容纳几百个元件。到了 80 年代,超大规模集成电路 (VLSI) 在芯片上容纳了几十万个元件,后来的 (ULSI) 将数字扩充到百万级。可以在硬币大小的芯片上容纳如此数量的元件使得计算机的体积和价格不断下降,而功能和可靠性不断增强。 70 年代中期,计算机制造商开始将计算机带给普通消费者,这时的小型机带有友好界面的软件包,供非专业人员使用的程序和最受欢迎的字处理和电子表格程序。 1981 年, IBM 推出个人计算机 (PC) 用于家庭、办公室和学校。 80 年代个人计算机的竞争使得价格不断下跌,微机的拥有量不断增加,计算机继续缩小体积。与 IBM PC 竞争的 Apple Macintosh 系列于 1984 年推出, Macintosh 提供了友好的图形界面,用户可以用鼠标方便地操作。
一、胆机电路的基本组成:1,电源供给:(1)电源变压器是一种通过电磁的作用把交流电压升高或降低的器件,它担负着整机电源能量的供给。
要求它:所供给每级负载的电压值要准确、稳定,允许偏差不得超过所需值的 5% ,带负载的能力要强,电源内阻要小,即使负载工作在峰值状态时电压也应该保持不变或基本不变。在长时间工作时,不得有过热、振动或其他异常现象。
电源变压器在整机担负着重要使命,它的品质优劣直接影响了放大器的安全性稳定度以及信躁比、动态范围的指标。使用在胆机中的电源变压器,大多以环型、E I型、C 型等种类,这几种铁芯对功率的转换效率有所不同,在设计和运用时应加以注意。
(2)整流器是利用二极管的单向导电特性,把交流电压转换为脉动的直流电。它可分为电子管整流和晶体管整流。
电子管整流分为半波整流(图 1 .1 )和全波整流(图 1 .2 )。电子管全波整流需要两个高压绕组,还要一组电流较大的整流管灯丝电压,这样增加了变压器的功耗;半波整流器效率低,在胆机电路里只适用于电流波动较小的栅极电路里。
由于电子管自身的特性(内阻较大、热损消耗大),所以现在商品机大多不采用。当然也有追求纯胆(无半导体器件)放大器的发烧友仍在使用。
晶体管整流则分为半波整流(图 1.3),全波整流(图 1.4 ),桥式整流(图 1.5)及倍压整流(图 1.6 )。桥式整流和全波整流则以效率高(输出的电压是交流电压有效值的 0.9 倍)、内阻小(压降 0.7 伏)、反应速度快,桥式整流只需一个高压绕组等优点。
目前使用较为广泛。(3)滤波器是把经过整流后的脉动直流电变为较平稳的直流电。
它的电路组成有;单只电容式又称C 型滤波器(图 2 .1);即在负载两端并联一只容量较大的电容器,这种滤波器的滤波效果与电容器的容量、负载电流大小有关,容量越大它所储存的电荷能量就越大,释放给负载的能量越大;相反,电容量越小,加在负载两端的脉动成分越大。它还和负载电阻的大小有关,负载电阻越大滤波效果越好。
由于电容容抗的原因,纹波频率高(电容器充放电的次数增加)滤波效果就好。但电容器的容量并不是可以无限的增大,过大的容量会造成在开机的瞬间因电容器充电电流过大损坏整流管或变压器绕组,况且电容器储存的电荷到达一定程度时,再增加容量已无任何实际意义了。
阻流圈(扼流圈)输入式滤波器又称 L - C 型滤波器(图 2 .2 ),这种滤波器由阻流圈与负载串联,电容与负载并联组成的。由于电容积累电流的波动,电感阻滞电流波动。
加入了阻流圈后电感对交流所呈现的感抗甚大,使整流后的脉动成分大部分被阻流圈分取,同时在电容的作用下,输出给负载两端的电压较为纯净。电容输入式滤波器又称Π型滤波器也称CLC型滤波器(图 2.3 );它是前两个滤波器的合成,这种滤波器吸收了 C 型,L-C 型的优点,滤波效果好,它输出的直流电压大约是输入交流电压有效值的 1.2 倍左右。
由于电感抗及电感线圈内阻的作用下,输出的电压比较稳定,所以,是目前在胆机放大器中,使用最多的一种滤波器。电感的感抗越大滤波效果越好同时阻流圈的体积、重量也同样增加,内阻也会随着增加,取值应在 8 -10 H 较好。
阻容式滤波器(图 2.4 );由于电阻对交流电和直流电的阻力一样,电阻在此很难起到阻交流成分的作用。否则,就要加大电阻值,这样,电阻两端的电压降就大,同时增加的负载内阻。
这种电路适合于使用电流较小的前置放大器电路。(4)稳压器是能够将电源输出电压保持的数值不随负载电流的变化而变化。
可以通过调整它的基准电压为负载提供所需的电压值。稳压器可分为电子管稳压器、晶体管稳压器。
电子管稳压器(图 3 .1)使用的是冷阴极充气式稳压管。所谓冷阴极,就是不需灯丝为阴极加热,无热损功耗。
工作时,稳压管内会产生紫红色的辉光并随着输出电流的大小而闪烁。它的使用也较灵活,既可以单只或多只串联(图 3 .2)以达到负载所需电压值,也可以并联(图3.3)向负载提供两稳压管之和的电流。
电子稳压管有品种型号较少、体积大、稳定电流小等缺点。(图 3.4)是晶体管简单的串联型稳压器。
它是在单管稳压的基础上增加了一只电压调整扩流管。它有输出的纹波系数小、内阻小、输出电流较大、体积小、电路简单使用方便等优点。
在胆机电路里,稳压器主要供给电压放大和推动倒相及功率管屏栅极等电路里。不过,在目前商品机中使用稳压器的极少(可能是由于增加了半导体器件会缺少“胆”味)。
(5)灯丝电路同样非常重要使用不当会引起50赫兹的交流声,图4.1、4.2、4.3、是处理交流灯丝噪音的几种通用接法。图4.4是直流灯丝电路,主要用在前放放大管电路,虽然它能有效的克服由灯丝产生的交流声,但由于使用了一套直流电源电路则容易出现直流转换速率慢,使用不当还容易出现100赫兹的交流声或由于增加了电源电路的元件引起噪音。
(6)高压延时保护器它是为了让放大管在得到了充分预热状态下,才接通高压。在刚开机时,阴极没有得到充分的预热而阳极就开始吸收电子,这样会加速电子管的老化。
由于胆机机箱内的温度较高,尽量不要使。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:4.215秒