简易频率计一、设计任务与要求1.设计制作一个简易频率测量电路,实现数码显示。
2.测量范围:10Hz~99.99KHz 3.测量精度: 10Hz。4. 输入信号幅值:20mV~5V。
5. 显示方式:4位LED数码。二、方案设计与论证频率计是用来测量正弦信号、矩形信号、三角形信号等波形工作频率的仪器,根据频率的概念是单位时间里脉冲的个数,要测被测波形的频率,则须测被测波形中1S里有多少个脉冲,所以,如果用一个定时时间1S控制一个闸门电路,在时间1S内闸门打开,让被测信号通过而进入计数译码器电路,即可得到被测信号的频率fx。
任务要求分析:频率计的测量范围要求为10Hz~99.99KHz,且精度为10Hz,所以有用4片10进制的计数器构成1000进制对输入的被测脉冲进行计数;要求输入信号的幅值为20mV~5V,所以要经过衰减与放大电路进行检查被测脉冲的幅值;由于被测的波形是各种不同的波,而后面的闸门或计数电路要求被测的信号必须是矩形波,所以还需要波形整形电路;频率计的输出显示要经过锁存器进行稳定再通过4位LED数码管进行显示。经过上述分析,频率计电路设计的各个模块如下图:方案一:根据上述分析,频率计定时时间1s可以通过555定时器和电容、电阻构成的多谐振荡器产生1000Hz的脉冲,再进行分频成1Hz即周期为1s的脉冲,再通过T触发器把脉冲正常高电平为1s;放大整形电路通过与非门、非门和二极管组成;闸门电路用一个与门,只有在定时脉冲为高电平时输入信号才能通过与门进入计数电路计数;计数电路可以通过5个十进制的计数器组成,计数器再将计的脉冲个数通过锁存器进行稳定最后通过4个LED数码显像管显示出来。
方案二:频率计定时时间1s可以直接通过555定时器和电容、电阻构成的多谐振荡器产生1Hz的脉冲,再通过T触发器把脉冲正常高电平为1s;放大整形电路可以直接用一个具有放大功能的施密特触发器对输入的信号进行整形放大,其他模块的电路和方案一的相同。通过对两种方案的分析,为了减少总的电路的延迟时间,提高测量精确度,所以选择元件少的第二种方案。
三、单元电路设计与参数计算时基电路:用555_VIRTUAL定时器和电容、电阻组成多谐振荡器产生1Hz的脉冲,根据书中的振荡周期 : T=(R1+R2)C*ln2 取C=10uF,R1=2KΩ,T=1s,计算得:R2=70.43KΩ,再通过T触发器T_FF把脉冲正常高电平为1s的脉冲,元件的连接如下: 经示波器仿真,产生的脉冲的高电平约为1S。放大整形电路:用一个74HC14D_4V的含放大功能的施密特触发器对输入脉冲进行放大整形,把输入信号放大整形成4V的矩形脉冲,其放大整形效果如下图:闸门电路:用一个与门74LS08作为脉冲能否通过的闸门,当定时信号Q为高电平时,闸门打开,输入信号进入计数电路进行计数,否则,其不能通过闸门。
计数电路:计数电路用5(4)片74192N计数器组成100000(10000)进制的计数电路,74192N是上升沿有效的,来一个脉冲上升沿,电路记一次数,所以计数的范围为0~99999(5000)。但计数1S后要对计数器进行清零或置零,在这里用清零端,高电平有效,当计数1S后,Q为低电平,Q'为高电平,所以用Q'作为清零信号,接线图如下:锁存显示电路:当计数电路计数结束时,要把计得脉冲数锁存通过数码显示管稳定显示出来。
锁存器用2片74ls273,时钟也是上升沿有效,当Q为下降沿时,Q'恰好是上升沿,所以用Q'作为锁存器的时钟,恰能在计数结束时把脉冲数锁存显示,电路的接线图如下:四、总电路工作原理及元器件清单1.总原理图2.电路完整工作过程描述(总体工作原理) 555组成的多谐振荡器产生1Hz的脉冲,经过T触发器整形成高电平时间为1S的脉冲,高电平脉冲打开闸门74LS08N,让经施密特触发器74HC14D放大整形的被测脉冲通过,进入计数器进行1S的计数。当计数结束时,T触发器的Q为下降沿,Q'刚好为上升沿,触发锁存器工作,让计数器输出的信号通过锁存器锁存显示,同时,高电平的Q'信号对计数电路进行清零,此后,电路将循环上述过程,但对于同一个被测信号,在误差的允许范围内,LED上所显示的数字是稳定的。
3.元件清单元件序号 型号 主要参数 数量 备注 1 74192 5 加法计数器 2 74LS273 2 锁存器3 DCD_HEX 4 LED显示器4 555_VIRTUAL 1 定时器5 T_FF 1 T触发器6 CAPACITOR_RATED 电容10Uf、额定电压50V 1 电容7 CAPACITOR_RATED 电容10Nf、额定电压10V 1 电容8 RES 阻值2KΩ 1 9 RES 阻值 1 10 74LS08 1 双输入与门11 74HC14D_4V 1 施密特触发器,放大电压4V12 AC_VOLTAGE 1 可调的正弦脉冲信号五、仿真调试与分析把各个模块组合起来后,进行仿真调试以达到任务要求。① 在信号输入端输入10Hz的交流脉冲,仿真,结果如下:说明仿真的结果准确② 在信号输入端输入300Hz的交流脉冲,仿真,结果如下:仿真结果准确③ 在信号输入端输入3KHz正弦脉冲,仿真,结果如下:④输入20KHz的正弦脉冲,仿真,结果如下:仿真结果结果与实际的结果相差20Hz,这说明频率越高,误差越大。
经分析,这是由于各个元器件存在着延迟时间,1S的脉冲,经过各。
1、设定一个时间shijian1,在该时间内统计脉冲个数count,计算频率公式为:pinlv=count/shijian1;启用定时器0中断对该计算进行控制。
2、输出用数码管采用动态扫描,扫描的刷新时间为shijian2. 用C语言设计。
我谈一下个人看法:
1对频率的计算是放在主程序内吧,但也不是绝对。数码管显示做成子程序形式。
2shijian1选5MS(根据实际情况适当调整),shijian2一般取3MS就可以了(显示子程序调用周期不能大于20MS,就是1/50HZ)。
3在输入P1.0口前信号做整形(比如使用CD40106)。
一、总体设计思想1.1基本原理 传统的硬件设计采用自下至上 (bo t tom _ up ) 的设计方法。
这种设计方法在系统设计的后期进行仿真和调试, 一旦考虑不周, 系统设计存在较大缺陷, 就有可能要重新设计系统, 使设计周期大大增加。 现代硬件设计利用电子设计自动化 (EDA ) 技术, 采用并行工程和自上至下 ( top _ dow n ) 的设计方法, 从系统设计入手, 在顶层进行功能方框图的划分和结构设计在方框图一级进行仿真和纠错,硬件描述语言对高层次的系统行为进行描述,在系统一级进行验证,最后在用逻辑综合优化工具生成具体地门逻辑电路的网表,其对应地物理实现是专用集成电路。
VHDL即超高速集成电路硬件描述语言,主要用于描述数字系统的结构 行为 功能和接口VHDL对设计的描述具有相对独立性,因此设计者可以不懂硬件结构,降低了硬件电路设计地难度。以4位十进制数字频率计的设计来说明VHDL语言在现代设计中的应用。
信号频率计的测量有测频法和周期法。本文用测频法,即直接计算每秒钟内信号脉冲的个数。
设计一个4位十进制数字频率计,其测量范围位1MHz,量程分1KHz 10KHz 100KHz 1MHz四档(4位数码管显示,最大读数胃999999Hz)量程自动转换规则:(1)读数大于999时,频率计处于超量程状态,此时显示器发出溢出指示,下次量程,量程自动增大一档。(2)读数小时,频率计处于前量程状态,下次测量,量程自动增大一档。
如果计数器输出直接译码显示电路,则频率计显示疆随时计数值地增加不断变化闪烁,人眼难以分辨。以防止此类现象象, 采用记忆显示方式, 即在计数与显示电路中间加以锁存电路, 每次计数结束, 将计数结果送锁存器锁存, 并保持到下一个计数结束。
而译码显示电路以 1 H z 频率对锁存器取样, 保证了显示时间至少为 1 s。测频控制信号发生器(TESTCTL)的程序如下.LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; ENTITY TESTCTL IS PORT(CLK: IN STD_LOGIC; CNT_EN,RST_CNT,LOAD:OUT STD_LOGIC); END; ARCHITECTURE BEHAVIOR OF TESTCTL IS SIGNAL div2clk:STD_LOGIC; BEGIN PROCESS(CLK) BEGIN IF CLK'EVENT AND CLK='1' THEN div2clk<=NOT div2clk; END IF; END PROCESS; PROCESS(CLK,div2clk) BEGIN IF (CLK='0' AND div2clk='0') THEN RST_CNT<='1'; ELSE RST_CNT<='0'; END IF; END PROCESS; LOAD<=NOT div2clk;CNT_EN<=div2clk; END BEHAVIOR; 锁存器(REG4B)的程序如下.LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; ENTITY REG4B IS PORT(LOAD: IN STD_LOGIC; DIN:IN STD_LOGIC_VECTOR(3 DOWNTO 0); DOUT:OUT STD_LOGIC_VECTOR(3 DOWNTO 0)); END; ARCHITECTURE BEHAVIOR OF REG4B IS BEGIN PROCESS(LOAD,DIN) BEGIN IF LOAD'EVENT AND LOAD='1' THEN DOUT<=DIN; END IF; END PROCESS; END BEHAVIOR; 动态扫描输出(SCAN6A)的程序如下.LIBRARY IEEE; USE IEEE.STD_LOGIC_1164.ALL; USE IEEE.STD_LOGIC_UNSIGNED.ALL; ENTITY SCAN6A IS PORT(CLK_SCAN: IN STD_LOGIC; EN:OUT STD_LOGIC; NO1_BCD,NO2_BCD,NO3_BCD,NO4_BCD:IN STD_LOGIC_VECTOR(3 DOWNTO 0); NO5_BCD,NO6_BCD: IN STD_LOGIC_VECTOR(3 DOWNTO 0); SEL:OUT STD_LOGIC_VECTOR(2 DOWNTO 0); DOUT:OUT STD_LOGIC_VECTOR(6 DOWNTO 0)); END SCAN6A; ARCHITECTURE BEHAVE OF SCAN6A IS SIGNAL S1:STD_LOGIC_VECTOR(2 DOWNTO 0); SIGNAL BCD_OUT:STD_LOGIC_VECTOR(3 DOWNTO 0); BEGIN PROCESS(CLK_SCAN) BEGIN IF CLK_SCAN'EVENT AND CLK_SCAN='1' THEN IF S1="101" THEN S1<="000"; ELSE OUTDOUT<="1111001"; END CASE; END PROCESS; EN<='0'; SEL<=S1; END BEHAVE;。
4.2.3简易数字频率计电路设计 数字频率计是用数字显示被测信号频率的仪器,被测信号可以是正弦波、方波或其它周期性变化的信号。
如配以适当的传感器,可以对多种物理量进行测试,比如机械振动的频率、转速、声音的频率以及产品的计件等等。因此,数字频率计是一种应用很广泛的仪器。
一、设计目的 1. 了解数字频率计测量频率与测量周期的基本原理; 2. 熟练掌握数字频率计的设计与调试方法及减小测量误差的方法。 二、设计任务与要求 要求设计一个简易的数字频率计,测量给定信号的频率,并用十进制数字显示,具体指标为: 1.测量范围:1HZ—9.999KHZ,闸门时间1s; 10 HZ—99.99KHZ,闸门时间0.1s; 100 HZ—999.9KHZ,闸门时间10ms; 1 KHZ—9999KHZ,闸门时间1ms; 2.显示方式:四位十进制数 3. 当被测信号的频率超出测量范围时,报警. 三、数字频率计基本原理及电路设计 所谓频率,就是周期性信号在单位时间 (1s) 内变化的次数.若在一定时间间隔T内测得这个周期性信号的重复变化次数为N,则其频率可表示为 fx=N/T 。
因此,可以将信号放大整形后由计数器累计单位时间内的信号个数,然后经译码、显示输出测量结果,这是所谓的测频法。可见数字频率计主要由放大整形电路、闸门电路、计数器电路、锁存器、时基电路、逻辑控制、译码显示电路几部分组成,总体结构如图4-2-6: 图4-2-6数字频率计原理图 从原理图可知,被测信号Vx经放大整形电路变成计数器所要求的脉冲信号Ⅰ,其频率与被测信号的频率fx相同。
时基电路提供标准时间基准信号Ⅱ,具有固定宽度T的方波时基信号II作为闸门的一个输入端,控制闸门的开放时间,被测信号I从闸门另一端输入,被测信号频率为fx,闸门宽度T,若在闸门时间内计数器计得的脉冲个数为N,则被测信号频率fx=N/THz。可见,闸门时间T决定量程,通过闸门时基选择开关选择,选择T大一些,测量准确度就高一些,T小一些,则测量准确度就低.根据被测频率选择闸门时间来控制量程.在整个电路中,时基电路是关键,闸门信号脉冲宽度是否精确直接决定了测量结果是否精确.逻辑控制电路的作用有两个:一是产生锁存脉冲Ⅳ,使显示器上的数字稳定;二是产生清“0”脉冲Ⅴ,使计数器每次测量从零开始计数。
1.放大整形电路 放大整形电路可以采用晶体管 3DGl00和74LS00,其中3DGl00组成放大器将输入频率为fx的周期信号如正弦波、三角波等进行放大。与非门74LS00构成施密特触发器,它对放大器的输出信号进行整形,使之成为矩形脉冲。
2.时基电路 时基电路的作用是产生标准的时间信号,可以由555组成的振荡器产生,若时间精度要求较高时,可采用晶体振荡器。由555定时器构成的时基电路包括脉冲产生电路和分频电路两部分。
(1)555多谐振荡电路产生时基脉冲 采用555产生1000HZ振荡脉冲的参考电路如图4-2-7所示。电阻参数可以由振荡频率计算公式f=1.43/((R1+2R2)*C)求得。
(2) 分频电路 由于本设计中需要1s、0.1s、10ms、1ms四个闸门时间,555振荡器产生1000HZ,周期为1ms的脉冲信号,需经分频才能得到其他三个周期的闸门信号,可采用74LS90分别经过一级、二级、三级10分频得到。 图4-2-7 555多谐振荡电路 3. 逻辑控制电路 在时基信号II结束时产生的负跳变用来产生锁存信号Ⅳ,锁存信号Ⅳ的负跳变又用来产生清“0”信号V。
脉冲信号Ⅳ和V可由两个单稳态触发器74LSl23产生,它们的脉冲宽度由电路的时间常数决定。触发脉冲从B端输入时,在触发脉冲的负跳变作用下,输出端Q可获得一正脉冲, Q非端可获得一负脉冲,其波形关系正好满足Ⅳ和V的要求。
手动复位开关S按下时,计数器清“ 0 ”。参考电路如图4-2-8 图4-2-8数字频率计逻辑控制电路 4.锁存器 锁存器的作用是将计数器在闸门时间结束时所计得的数进行锁存,使显示器上能稳定地显示此时计数器的值.闸门时间结束时,逻辑控制电路发出锁存信号Ⅳ,将此时计数器的值送译码显示器。
选用8D锁存器74LS273可以完成上述功能.当时钟脉冲CP的正跳变来到时,锁存器的输出等于输入,即Q=D。从而将计数器的输出值送到锁存器的输出端。
正脉冲结束后,无论D为何值,输出端Q的状态仍保持原来的状态Qn 不变.所以在计数期间内,计数器的输出不会送到译码显示器. 5.报警电路 本设计要求用4位数字显示,最高显示为9999。超过9999就要求报警,即当千位达到9(即1001)时,如果百位上再来一个时钟脉冲(即进位脉冲),就可以利用此来控制蜂鸣器报警。
电路如图4-2-9: 图4-2-9 数字频率计报警电路 四、调试要点 1.通电准备 打开电源之前,先按照系统原理图检查制作好的电路板的通断情况,并取下电路板上的集成块,然后接通电源,用万用表检查板上的各点电源电压值,之后再关掉电源,插上集成块。 2.单元电路检测 接通电源后,用双踪示波器 ( 输人耦合方式置 DC 档 ) 观察时基电路的输出波形,看其是否满足设计要求,若不符合,则调整R1和R2。
然后改变示波器的扫描速率旋钮,观察 74LSl23 的第13 脚和第10 脚的波形是否为锁存脉冲Ⅳ和清零脉冲 V 的波形。 将 4 片计数器 74LS90。
(一)基本任务和要求:
1、设计一个可容纳6组(或4组)参赛的数字式抢答器,每组设一个按钮,供抢答使用。
2、抢答器具有第一信号鉴别和锁存功能,使除第一抢答者外的按钮不起作用。
3、设置一个主持人“复位”按钮。
4、主持人复位后,开始抢答,第一信号鉴别锁存电路得到信号后,有指示灯显示抢答组别,扬声器发出2~3秒的音响。
5、设置一个计分电路,每组开始预置100分,由主持人记分,答对一次加10分,答错一次减10分。
(二)提示:
1、此设计问题的关键是准确判断出第一抢答者并将其锁存,实现的方法可使用触发器或锁存器,在得到第一信号后将输入封锁,使其它组的抢答信号无效。
2、形成第一抢答信号后,用编码、译码及数码显示电路显示第一抢答者的组别,用第一抢答信号推动扬声器发出音响。
3、计分电路采用十进制加/减计数器、数码管显示,由于每次都是加/减10分,所以个位始终为零,只要十位、百位进行加/减运算即可。
设计三:数字频率计的设计
(一)基本任务和要求:
1、设计一个能测量方波信号的频率的频率计。
2、测量的频率范围是0?999999Hz。
3、结果用十进制数显示。
(二)提示:
1、脉冲信号的频率就是在单位时间内所产生的脉冲个数,其表达式为,f为被测信号的频率,N为计数器所累计的脉冲个数,T为产生N个脉冲所需的时间。所以,在1秒时间内计数器所记录的结果,就是被测信号的频率。
2、被测频率信号取自实验箱晶体振荡器输出信号,加到主控门的输入端。
3、再取晶体振荡器的另一标准频率信号,经分频后产生各种时基脉冲:1ms,10ms,0.1s,1s等,时基信号的选择可以控制,即量程可以改变。
4、时基信号经控制电路产生闸门信号至主控门,只有在闸门信号采样期间内(时基信号的一个周期),输入信号才通过主控门。
5、f=N/T,改变时基信号的周期T,即可得到不同的测频范围。
6、当主控门关闭时,计数器停止计数,显示器显示记录结果,此时控制电路输出一个置零信号,将计数器和所有触发器复位,为新的一次采样做好准备。
7、改变量程时,小数点能自动移位。
;dbname=CJFD2000
课程设计 简易数字频率计2008-10-18 13:16课题名称:简易数字频率计主要技术指标和要求:(1) 被测信号的频率范围100Hz~10kHz(2) 输入信号为正弦信号或方波信号(3) 四位数码管显示所测频率,并用发光二极管表示单位(4) 具有超量程报警功能【摘 要】在电子系统非常广泛应用领域内,到处可见到处理离散信息的数字电路,在电子技术中,频率是最基本的参数之一,并且与许多电参量的测量方案、测量结果都有十分密切的关系,因此频率的测量就显得更为重要。
测量频率的方法有多种,其中电子计数器测量频率具有精度高、使用方便、测量迅速,以及便于实现测量过程自动化等优点,文章主要阐述了选择单片机作为核心器件,采用模块化布局,设计了一个简易数字频率计的过程。设计思路频率计是直接用十进制来显示被测信号频率的一种测量装置,它可以测量正弦波 方波和三角波的频率,利用施密特触发器将输入信号整形为方波,并利用计数器测量1S内脉冲的个数,利用锁存器锁存,稳定显示在数码管上常用的频率测量方法(1) 测频法测频法的基本思想是:对频率为f的周期信号,用一个标准闸门信号对被测信号的重复周期数进行计数,当计数结果为N时,其信号频率为如图测频法的测量误差与信号频率有关:信号频率越高误差越小;而信号频率越低,则测量误差越大,因此,测频法适合于对高频信号的测量,测量越高,测量精度也就越高(2) F/V 与A/D法这种测量方法是先通过F/V变换,把频率信号转换成电压信号;然后再通过A/D转换把电压信号转换成数字信号,在对数字信号进行计数,从而得到测量信号的频率根据性能与技术指标的要求,首先需要确定能满足这些指标的频率测量方法,根据上述频率测量原理与方法的讨论,本设计采用测频法由于测频法的测量误差与信号频率成反比:信号频率越低,测量误差越大,信号频率越高,测量误差越小。
用测频发所获得的测量数据,在闸门时间为1S时,不需要进行任何换算,计数器所计数据就是信号频率,另外,在信号频率较低时,可以通过增大闸门时间来提高测量精度电路设计用测频发构成的数字频率计的原理框图如图示(1) 放大整形电路由二极管及电阻构成的幅度扩展电路和555构成的施密特触发电路构成整形电路,如下图示二极管D1 D2 及电阻R1R2构成信号幅度扩展电路,当输入信号较小时,限幅器的二极管均截至,不起作用。用555构成的施密特触发器作用是将输入的周期性信号,如正弦波三角波或其他呈周期性变化的波形换成脉冲波形,其周期不变(2) 时基电路时基电路的作用是控制计数器的输入脉冲。
当标准时间信号到来时,闸门开通,被测信号通过闸门进入计数器计数,当标准脉冲结束时,闸门关闭,计数器无脉冲输入,时基电路可以由555定时器构成的多谐振荡器实现 如下图产生的方波信号高电平时间长度为1S,低电平时间长度为0.25s。利用公式t1=0.7(R1+R2)t2=0.7R2C计数参数,参数如上图(3) 控制电路控制电路可以由555构成的单稳态电路构成 如下图逻辑控制电路利用标准时间信号结束后产生的负跳变来产生锁存信号,同时锁存信号经反相又产生清零信号,锁存信号的脉冲宽度由单稳态电路本身的时间常数决定(4) 计数 锁存 译码 显示电路计数电路用4个同步十进制加法计数器构成,可以选择同步十进制加法计数器74LS160同步十进制可逆计数器 74LS190或 74LS192 双 BCD码计数器CD4518等集成电路来实现,译码器可采用共阴极显示译码器 74LS48或共阳极显示译码器74LS47,具体根据数码管的型号来确定。
锁存器则可选用 8D锁存器74LS373或 74LS273锁存器的作用是将计数器在1s结束时的计数值进行锁存,使显示器上获得稳定的测量值,当时钟脉冲CP的正跳变来到时,锁存器的输出等于输入,从而将计数器的输出值送到锁存器的输出端。正脉冲结束后,输出不在改变(5) 总电路图收获与体会:通过本次课程设计,体会到了设计的艰辛,第一部分为课题的初步考虑。
通过查资料找线索,提出不同方案,并对各种方案进行比较讨论,选取了最好的方案而且对总框图进行构思和设计第二部分为系统的详细设计。这一部分是最有挑战性的。
为了实现各模块的功能而苦苦奋战。经过无数次修改而成功。
初步尝到成功的喜悦。增强了进一步设计的信心。
第三部分为系统完成下载阶段。这阶段也遇到困难。
不过解决起来容易多了。对各种问题有了经验。
测试,下载,连线。终于设计初步完成了。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.615秒