酶的分离纯化一般包括三个基本步骤:即抽提、纯化、结晶或制剂。
首先将所需的酶从原料中引入溶液,此时不可避免地夹带着一些杂质,然后再将此酶从溶液中选择性地分离出来,或者从此溶液中选择性地除去杂质,然后制成纯化的酶制剂。
酶分离纯化的最终目的是获得单一纯净的酶,因此,容许在不破坏“目的酶”的限度内,使用各种手段;酶与底物和抑制剂的结合常使其理化性质和稳定性发生改变,这种特性已被用于酶的分离纯化。
由于酶及其来源的多样性及与之共存的高分子物质的复杂性,目前还很难找到一种通用的方法以适用于一切酶的纯化。为了使一种酶达到高度纯化,往往需要多种方法协同作用,通过酶活性的跟踪检测确定最佳流程。
扩展资料:
酶的本性是蛋白质,凡可用于蛋白质分离纯化的方法都同样适用于酶,但酶易失活,故分离纯化需在低温(4℃)、温和pH(4<pH>10)等条件下进行。
与蛋白质类似,酶易在溶液表面或界面处形成薄膜而变性,因此操作中应尽量减少泡沫形成,此外重金属易使酶失效,有机溶剂能使酶变性,微生物污染以及蛋白水解酶的存在能使酶分解破坏。
在进行菌种鉴定时,所用的微生物一般均要求为纯的培养物。得到纯培养的过程称是分离纯化。
参考资料来源:百度百科——酶分离纯化方法
酶是蛋白质,因此凡用于蛋白质的纯化手段均适用于酶的纯化,如盐析法、聚乙二醇沉淀法、有机浴剂分级沉淀法、等电点法、选择性沉淀法、各种柱层析法(吸附层析、离子交换层析、凝胶过滤)、各种电泳法及亲和层析等。
不同之处是酶的纯化过程尚需选用迅速简便的活力测定方法,以追踪酶的去向。在选用酶的活力测定方法时,分析方法的迅速要比其精确度更为重要。
如宁可要一个需时5min,准确度为5%的方法;也不要一个需时30 min,准确度为0.5%的方法。在建立活力测定法之后,再根据各单元纯化步骤及活力分布情况用列表形式表达,表的内容包括:操作步骤、总体积、酶浓度(每毫升酶活力)、总活力、蛋白质浓度mg/ml)、比活力(即纯度、酶活力单位/毫克蛋白)、产率%(每步总活力除以第一步的总活力)和纯化倍数(每步比活力除以第一步比活力)。
酶,从动植物细胞和微生物中提取之后,往往不能直接应用,这是因为生物在合成酶的同时也合成其他大分子物质。而这些大分子物质会严重干扰酶的作用,因此必须把酶从中分离出来。如果酶不纯,那么极有可能在应用中形成几个生化反应同时进行,结果得到的产物也就不是单一的。当然,酶并不是越纯越好。不同的生物化学反应,对酶的纯度要求也不一样。因此,要把酶制成不同的酶制剂,以便适应各种需求。
要对酶进行分离和提纯,有多种方法。当酶从生物细胞以及微生物中产生之后,可能留在细胞内,也可能分泌到细胞外面。如果是胞外酶,这就方便多了,只要收集微生物和细胞的培养液进行分离和提纯就可以了。如果酶在细胞内(称胞内酶),则必须研碎细胞,才能把酶提取出来。不论是胞外酶还是胞内酶,都可能会含有一些其他大分子物质,如核酸、蛋白质和淀粉之类的东西。
对付核酸,只要在酶溶液中加入核酸酶,就可以去掉核酸。对于淀粉也比较好办。最难对付的是蛋白质,因为酶也是蛋白质,能破坏蛋白质的方法也可以破坏酶,所以提纯是件比较困难的事。但随着现代科学技术的不断进步,经过研究,已找到沉淀法、分子过滤法等。采用以上提纯方法,就可以得到不同纯度的酶,这为酶的广泛应用打开了方便之门。
酶是蛋白质,可以根据其特点选择适当的蛋白质提取纯化方法!选择材料及预处理 以蛋白质和结构与功能为基础,从分子水平上认识生命现象,已经成为现代生物学发展的主要方向,研究蛋白质,首先要得到高度纯化并具有生物活性的目的物质。
蛋白质的制备工作涉及物理、化学和生物等各方面知识,但基本原理不外乎两方面。一是得用混合物中几个组分分配率的差别,把它们分配到可用机械方法分离的两个或几个物相中,如盐析,有机溶剂提取,层析和结晶等;二是将混合物置于单一物相中,通过物理力场的作用使各组分分配于来同区域而达到分离目的,如电泳,超速离心,超滤等。
在所有这些方法的应用中必须注意保存生物大分子的完整性,防止酸、碱、高温,剧烈机械作用而导致所提物质生物活性的丧失。蛋白质的制备一般分为以下四个阶段:选择材料和预处理,细胞的破碎及细胞器的分离,提取和纯化,浓细、干燥和保存。
微生物、植物和动物都可做为制备蛋白质的原材料,所选用的材料主要依据实验目的来确定。对于微生物,应注意它的生长期,在微生物的对数生长期,酶和核酸的含量较高,可以获得高产量,以微生物为材料时有两种情况:(1)得用微生物菌体分泌到培养基中的代谢产物和胞外酶等;(2)利用菌体含有的生化物质,如蛋白质、核酸和胞内酶等。
植物材料必须经过去壳,脱脂并注意植物品种和生长发育状况不同,其中所含生物大分子的量变化很大,另外与季节性关系密切。对动物组织,必须选择有效成份含量丰富的脏器组织为原材料,先进行绞碎、脱脂等处理。
另外,对预处理好的材料,若不立即进行实验,应冷冻保存,对于易分解的生物大分子应选用新鲜材料制备。蛋白质的分离纯化 一,蛋白质(包括酶)的提取 大部分蛋白质都可溶于水、稀盐、稀酸或碱溶液,少数与脂类结合的蛋白质则溶于乙醇、丙酮、丁醇等有机溶剂中,因些,可采用不同溶剂提取分离和纯化蛋白质及酶。
(一)水溶液提取法 稀盐和缓冲系统的水溶液对蛋白质稳定性好、溶解度大、是提取蛋白质最常用的溶剂,通常用量是原材料体积的1-5倍,提取时需要均匀的搅拌,以利于蛋白质的溶解。提取的温度要视有效成份性质而定。
一方面,多数蛋白质的溶解度随着温度的升高而增大,因此,温度高利于溶解,缩短提取时间。但另一方面,温度升高会使蛋白质变性失活,因此,基于这一点考虑提取蛋白质和酶时一般采用低温(5度以下)操作。
为了避免蛋白质提以过程中的降解,可加入蛋白水解酶抑制剂(如二异丙基氟磷酸,碘乙酸等)。下面着重讨论提取液的pH值和盐浓度的选择。
1、pH值 蛋白质,酶是具有等电点的两性电解质,提取液的pH值应选择在偏离等电点两侧的pH 范围内。用稀酸或稀碱提取时,应防止过酸或过碱而引起蛋白质可解离基团发生变化,从而导致蛋白质构象的不可逆变化,一般来说,碱性蛋白质用偏酸性的提取液提取,而酸性蛋白质用偏碱性的提取液。
2、盐浓度 稀浓度可促进蛋白质的溶,称为盐溶作用。同时稀盐溶液因盐离子与蛋白质部分结合,具有保护蛋白质不易变性的优点,因此在提取液中加入少量NaCl等中性盐,一般以0.15摩尔。
升浓度为宜。缓冲液常采用0.02-0.05M磷酸盐和碳酸盐等渗盐溶液。
(二)有机溶剂提取法 一些和脂质结合比较牢固或分子中非极性侧链较多的蛋白质和酶,不溶于水、稀盐溶液、稀酸或稀碱中,可用乙醇、丙酮和丁醇等有机溶剂,它们具的一定的亲水性,还有较强的亲脂性、是理想的提脂蛋白的提取液。但必须在低温下操作。
丁醇提取法对提取一些与脂质结合紧密的蛋白质和酶特别优越,一是因为丁醇亲脂性强,特别是溶解磷脂的能力强;二是丁醇兼具亲水性,在溶解度范围内(度为10%,40度为6.6%)不会引起酶的变性失活。另外,丁醇提取法的pH及温度选择范围较广,也适用于动植物及微生物材料。
二、蛋白质的分离纯化 蛋白质的分离纯化方法很多,主要有:(一)根据蛋白质溶解度不同的分离方法1、蛋白质的盐析 中性盐对蛋白质的溶解度有显著影响,一般在低盐浓度下随着盐浓度升高,蛋白质的溶解度增加,此称盐溶;当盐浓度继续升高时,蛋白质的溶解度不同程度下降并先后析出,这种现象称盐析,将大量盐加到蛋白质溶液中,高浓度的盐离子(如硫酸铵的SO4和NH4)有很强的水化力,可夺取蛋白质分子的水化层,使之“失水”,于是蛋白质胶粒凝结并沉淀析出。盐析时若溶液pH在蛋白质等电点则效果更好。
由于各种蛋白质分子颗粒大小、亲水程度不同,故盐析所需的盐浓度也不一样,因此调节混合蛋白质溶液中的中性盐浓度可使各种蛋白质分段沉淀。 影响盐析的因素有:(1)温度:除对温度敏感的蛋白质在低温(4度)操作外,一般可在室温中进行。
一般温度低蛋白质溶介度降低。但有的蛋白质(如血红蛋白、肌红蛋白、清蛋白)在较高的温度(25度)比0度时溶解度低,更容易盐析。
(2)pH值:大多数蛋白质在等电点时在浓盐溶液中的溶介度最低。(3)蛋白质浓度:蛋白质浓度高时,欲分离的蛋白质常常夹杂着其他蛋白质地一起沉淀出来(共沉现象)。
因此在盐析前血清要加。
这是一门很深的学问,除了需要高科技还需要科研专用设备,只是简介,希望对你有帮助,不要上当受骗:酶的分离纯化方法简介 生物细胞产生的酶有两类:一类由细胞内产生后分泌到细胞外进行作用的酶,称为细胞外酶。
这类酶大都是水解酶,如酶法生产葡萄糖所用的两种淀粉酶,就是由枯草杆菌和根酶发酵过程中分泌的。这类酶一般含量较高,容易得到;另一类酶在细胞内产生后并不分泌到细胞外,而在细胞内起催化作用,称为细胞内酶,如柠檬酸、肌苷酸、味精的发酵生产所进行的一系列化学反应,就是在多种酶催化下在细胞内进行的,在类酶在细胞内往往与细胞结构结合,有一定的分布区域,催化的反应具有一定的顺序性,使许多反应能有条不紊地进行。
酶的来源多为生物细胞。生物细胞内产生的总的酶量虽然是很高的,但每一种酶的含量却很低,如胰脏中期消化作用的水解酶种类很多,但各种酶的含量却差别很大。
因此,在提取某一种酶时,首先应当根据需要,选择含此酶最丰富的材料,如胰脏是提取胰蛋白酶、胰凝乳蛋白酶、淀粉酶和脂酶的好材料。由于从动物内脏或植物果实中提取酶制剂受到原料的限制,如不能综合利用,成本又很大。
目前工业上大多采用培养微生物的方法来获得大量的酶制剂。从微生物中来生产酶制剂的优点有很多,既不受气候地理条件限制,而且动植物体内酶大都可以在微生物中找到,微生物繁殖快,产酶量又丰富,还可以通过选育菌种来提高产量,用廉价原料可以大量生产。
由于在生物组织中,除了我们所需要的某一种酶之外,往往还有许多其它酶和一般蛋白质以及其他杂质,因此为制取某酶制剂时,必须经过分纯化的手续。酶是具有催化活性的蛋白质,蛋白质很容易变性,所以在酶的提纯过程中应避免用强酸强碱,保持在较低的温度下操作。
在提纯的过程中通过测定酶的催化活性可以比较容易跟踪酶在分离提纯过程中的去向。酶的催化活性又可以作为选择分离纯化方法和操作条件的指标,在整个酶的分离纯化过程中的每一步骤,始终要测定酶的总活力和比活力,这样才能知道经过某一步骤回收到多少酶,纯度提高了多少,从而决定着一步骤的取舍。
酶的分离纯化一般包括三个基本步骤:即抽提、纯化、结晶或制剂。首先将所需的酶从原料中引入溶液,此时不可避免地夹带着一些杂质,然后再将此酶从溶液中选择性地分离出来,或者从此溶液中选择性地除去杂质,然后制成纯化的酶制剂。
下面就酶的分离纯化的常用方法作一综合介绍:一、预处理及固液分离技术1.细胞破碎(celldisruption) 高压均质器法:此法可用于破碎酵母菌、大肠菌、假单胞菌、杆菌甚至黑曲霉菌。将细胞悬浮液在高压下通入一个孔径可调的排放孔中,菌体从高压环境转到低压环境,细胞就容易破碎。
菌悬液一次通过均质器的细胞破碎率在12%-67%。细胞破碎率与细胞的种类有关。
要达到90%以上的细胞破碎率,起码要将菌悬液通过均质器两次。最好是提高操作压力,减少操作次数。
但有人报道,当操作压力达到175mpa时,破碎率可达100%。当压力超过70mpa时,细胞破碎率上升较为缓慢。
高压均质器的阀门是影响细胞破碎率的重要因素。丝状菌会堵塞均质器的阀门,尤其高浓度菌体时更是如此。
在丰富培养基上比在合成培养基上生长的大肠菌更难破碎。容菌酶处理法:蛋清中含有丰富的溶菌酶,价格便宜,常用来裂解细胞。
具体做法是:溶壁微球菌()43kg,置于0.5%的氯化钠溶液中,使细胞浓度为5%(干重),在35℃用0.68kg(干重)的蛋清处理20min,得到的细胞碎片用相同体积的乙醇处理,用离心机将细胞碎片和胞内蛋白质除去,再将乙醇浓度提高到75%(体积分数),可以得到纯度为5%的过氧化氢酶1500g。2.离心 离心分离过程可分为离心过滤、离心沉淀、离心分离3种类型,所使用的设备有过滤式离心机、沉降式离心机和离心机。
过滤式离心机的转鼓壁上开有小孔,壁上有过滤介质,一般可用于处理悬浮固体颗粒较大、固体含量较高的场合。沉降式离心机用于分离固体浓度较低的固液分离,如发酵液中的菌体,用盐析法或有机溶剂处理过的蛋白质等。
分离机用于分离两种互不相溶的、密度有微小差别的乳浊液或含微量固体微粒的乳浊液。在生物领域采用的离心机系统,除了应具备离心机的一般要求外,还应满足生物生产的技术要求,这包括灭菌、冷却、密封,以保证产品不受污染并不污染环境。
现代哦离心机装置包括以下三个步骤,并进行程序控制:离心、离心系统的灭菌及就地清洗。如阿法-拉伐公司离心机产品的装置,具有双重轴向密封,密封由装在转筒主轴上下的碳化硅动环和固定环组成,密封由水连续冷却和润滑,可防止产品被污染,也可防止生产过程中排出的废物对环境的污染。
该离心机又如一个密闭的压力容器,可在121℃温度下进行蒸汽灭菌,该离心设备设有环绕离心机转筒的冷却夹套,对悬浮液和浓缩的固体都能进行充分的冷却,并能有效地控制温度,这对于生物制品是非常重要的。如btpx205型离心机可用于细胞收集、培养液的净化和细胞碎片的分离,可用于疫苗、酶制剂等的。
酶是蛋白质,因此一般蛋白质的分离原则都应该遵行。
但酶作为特殊的蛋白质,最重要的原则是一定在纯化过程中保持酶的活性,所以纯化过程中一般要注意保持低温、缓冲液配方避免酶的抑制。每个步骤都要检测酶活性,一方面直观了解纯化的回收率,另一方面可以计算酶的纯度。
酶的分离纯化方法一般根据酶的分子量、等电点、疏水性等生化性质,选择相应的沉淀、盐析、层析方法,其中亲和层析可以应用可逆性底物作为配基或特异性抗体,制备亲和层析胶。酶的分离纯化工作主要是,将酶从杂蛋白中分离出来或者将杂蛋白从酶溶液中除去。
现有的酶分离纯化方法都是依据酶和杂蛋白在性质上的差异而建立的。 1、根据分子大小而设计的方法,如离心分离法、筛膜分离法、凝胶过滤法等。
2、根据溶解度的大小分离的方法,如盐析法,有机溶剂沉淀法,共沉淀法。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.617秒