工程施工过程中,常常会遇到不同坐标系统间,坐标转换的问题。
目前国内常见的转换有以下几种:1,大地坐标(BLH)对平面直角坐标(XYZ);2,北京54全国80及WGS84坐标系的相互转换;3,任意两空间坐标系的转换。其中第2类可归入第三类中。
所谓坐标转换的过程就是转换参数的求解过程。常用的方法有三参数法、四参数法和七参数法。
以下对上述三种情况作详细描述如下: 1,大地坐标(BLH)对平面直角坐标(XYZ) 常规的转换应先确定转换参数,即椭球参数、分带标准(3度,6度)和中央子午线的经度。椭球参数就是指平面直角坐标系采用什么样的椭球基准,对应有不同的长短轴及扁率。
一般的工程中3度带应用较为广泛。对于中央子午线的确定有两种方法,一是取平面直角坐标系中Y坐标的前两位*3,即可得到对应的中央子午线的经度。
如x=3250212m,y=395121123m,则中央子午线的经度=39*3=117度。另一种方法是根据大地坐标经度,如果经度是在155.5~185.5度之间,那么对应的中央子午线的经度=(155.5+185.5)/2=117度,其他情况可以据此3度类推。
另外一些工程采用自身特殊的分带标准,则对应的参数确定不在上述之列。 确定参数之后,可以用软件进行转换,以下提供坐标转换的程序下载。
2,北京54全国80及WGS84坐标系的相互转换 这三个坐标系统是当前国内较为常用的,它们均采用不同的椭球基准。 其中北京54坐标系,属三心坐标系,大地原点在苏联的普而科沃,长轴6378245m,短轴6356863,扁率1/298.3;西安80坐标系,属三心坐标系,大地原点在陕西省径阳县永乐镇,长轴6378140m,短轴6356755,扁率1/298.25722101;WGS84坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。
由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。
当然若条件不许可,且有足够的重合点,也可以进行人工解算。详细方法见第三类。
3,任意两空间坐标系的转换 由于测量坐标系和施工坐标系采用不同的标准,要进行精确转换,必须知道至少3个重合点(即为在两坐标系中坐标均为已知的点。采用布尔莎模型进行求解。
布尔莎公式: 对该公式进行变换等价得到: 解算这七个参数,至少要用到三个已知点(2个坐标系统的坐标都知道),采用间接平差模型进行解算: 其中: V 为残差矩阵; X 为未知七参数; A 为系数矩阵; 解之:L 为闭合差 解得七参数后,利用布尔莎公式就可以进行未知点的坐标转换了,每输入一组坐标值,就能求出它在新坐标系中的坐标。 但是要想GPS观测成果用于工程或者测绘,还需要将地方直角坐标转换为大地坐标,最后还要转换为平面高斯坐标。
上述方法类同于我们的间接平差,解算起来较复杂,以下提供坐标转换程序,只需输入三个已知点的坐标即可求解出坐标转换的七个参数。如果已知点的数量较多,可以进行参数间的平差运算,则精度更高。
当已知点的数量只有两个时,我们可以采用简单变换法,此法较为方便易行,适于手算,只是精度受到一定的限制。 详细解算方程如下: 式中调x,y和x\'、y\'分别为新旧(或;旧新)网重合点的坐标,a、b、、k为变换参数,显然要解算出a、b、、k,必须至少有两个重合点,列出四个方程。
即可进行通常的参数平差,解求a、x、b、c、d各参数值。将之代人(3)式,可得各拟合点的残差(改正数)代人(2)式,可得待换点的坐标。
求出解算参数之后,可在Excel中,进行其余坐标的转换。 上次笔者用此法进行过80和54坐标的转换,由于当时没有多余的点可供验证和平差,所以转换精度不得而知,但转换之后各点的相对位置不变。
估计,实际的转换误差应该是10m量级的。 还有一些情况是先将大地坐标转换 为直角坐标,然后进行相关转换。
分为3步计算:
第1步 分别将两点经纬度转换为三维直角坐标:
假设地球球心为三维直角坐标系的原点,球心与赤道上0经度点的连线为X轴,球心与赤道上东经90度点的连线为Y轴,球心与北极点的连线为Z轴,则地面上点的直角坐标与其经纬度的关系为:
x=R*cosα*cosβ
y=R*cosα*sinβ
z=R*sinα
R为地球半径,约等于6400km;
α为纬度,北纬取+,南纬取-;
β为经度,东经取+,西经取-。
第2步 根据直角坐标求两点间的直线距离(即弦长):
如果两点的直角坐标分别为(x1,y1,z1)和(x2,y2,z2),则它们之间的直线距离为:
L=[(x1-x2)^2+(y1-y2)^2+(z1-z2)^2]^0.5
上式为三维勾股定理,L为直线距离。
第3步 根据弦长求两点间的距离(即弧长):
由平面几何知识可知弧长与弦长的关系为:
S=R*π*2[arc sin(0.5L/R)]/180
上式中角的单位为度,1度=π/180弧度,S为弧长。
按上述的公式自己用程序或者EXCEL表编写一个,方便实用
西安80坐标系与北京54坐标系的转换西安80坐标系与北京54坐标系其实是一种椭球参数的转换作为这种转换在同一个椭球里的转换都是严密的,而在不同的椭球之间的转换是不严密,因此不存在一套转换参数可以全国通用的,在每个地方会不一样,因为它们是两个不同的椭球基准。 那么,两个椭球间的坐标转换,一般而言比较严密的是用七参数布尔莎模型,即 X 平移, Y 平移, Z 平移, X 旋转(WX), Y 旋转(WY), Z 旋转(WZ),尺度变化(DM )。要求得七参数就需要在一个地区需要 3 个以上的已知点。如果区域范围不大,最远点间的距离不大于 30Km( 经验值 ) ,这可以用三参数,即 X 平移, Y 平移, Z 平移,而将 X 旋转, Y 旋转, Z 旋转,尺度变化面DM视为 0 。 方法如下(MAPGIS平台中): 第一步:向地方测绘局(或其它地方)找本区域三个公共点坐标对(即54坐标x,y,z和80坐标x,y,z); 第二步:将三个点的坐标对全部转换以弧度为单位。(菜单:投影转换/输入单点投影转换,计算出这三个点的弧度值并记录下来) 第三步:求公共点求操作系数(菜单:投影转换/坐标系转换)。如果求出转换系数后,记录下来。 第四步:编辑坐标转换系数。(菜单:投影转换/编辑坐标转换系数。)最后进行投影变换,"当前投影"输入80坐标系参数,"目的投影"输入54坐标系参数。进行转换时系统会自动调用曾编辑过的坐标转换系数。
1、北京54和西安80是两种不同的大地基准面,不同的参考椭球体,因而两种地图下,同一个点的坐标是不同的,无论是三度带六度带坐标还是经纬度坐标都是不同的。
2、数字化后的得到的坐标其实不是WGS84的经纬度坐标,因为54和80的转换参数至今没有公布,一般的软件中都没有54或80投影系的选项,往往会选择WGS84投影。
3、WGS84、北京54、西安80之间,没有现成的公式来完成转换。
4、对于54或80坐标,从经纬度到平面坐标(三度带或六度带)的相互转换可以借助软件完成。 5、54和80间的转换,必须借助现有的点和两种坐标,推算出变换参数,再对待转换坐标进行转换。(均靠软件实现)
6、在选择参考点时,注意不能选取河流、等高线、地名、高程点,公路尽量不选。这些在两幅地图上变化很大,不能用作参考。而应该选择固定物,如电站,桥梁等。
54坐标系下转换成的经纬度坐标 跟80坐标系下平面坐标转换后的经纬度坐标是不同的。一个点按3度和6度分带 经纬度坐标肯定是一样的,但是其平面坐标值不同。
目前国内常见的坐标转换有以下几种:
1、大地坐标(BLH)对平面直角坐标(XYZ)。常规的转换应先确定转换数参,即椭球参数、分带标准(3度,6度)和中央子午线的经度。椭球参数就是指平面直角坐标系采用什么样的椭球基准,对应有不同的长短轴及扁率。画到直角坐标系可以写为(x+z*acosθ,y+z*asinθ)a,θ为参数。
2、北京54全国80及WGS84坐标系(WGS一84 Coordinate System)的相互转换。一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向BIH (国际时间)1984.O定义的协议地球极(CTP)方向,X轴指向BIH 1984.0的零子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系统。
3、任意两空间坐标系的转换。由于测量坐标系和施工坐标系采用不同的标准,要进行精确转换,必须知道至少3个重合点(即为在两坐标系中坐标均为已知的点。采用布尔莎模型进行求解。布尔莎公式。
其中第2类可归入第三类中。常用的方法有三参数法、四参数法和七参数法。
4、在十进制角度和度/分/秒格式之间进行转换
DD 和 DMS 坐标格式之间的转换非常简单。下面给出了 DD 到 DMS 的转换公式: DD: dd.ffDMS: dd mm ssdd=ddmm .gg=60*ffss=60*gg 这里的 gg 代表计算的小数部分。负纬度表示位于南半球(S)的位置而负经度表示西半球(W)的位置。例如,假设您具有一个 DD 格式的坐标 61.44,25.40。按照下面的公式将其转换: lat dd=61lat mm .gg=60*0.44=26.4lat ss=60*0.4=24 以及: lon dd=25lon mm .gg=60*0.40=24.0lon ss=60*0.0=0 因此,转换为 DMS 格式的坐标变成了 61°26'24''N 25°24'00''E。
将 DMS 转换为 DD 格式的公式如下所示: DD: dd.ffDMS: dd mm ssdd.ff=dd + mm/60 + ss/3600 注意,南半球(S)的位置为负纬度,西半球(W)位置为负经度。
现在将 DMS 格式坐标 47°02'24''S 和 73°28'48''W 转换为 DD 格式的坐标: lat dd.ff= - (47 + 2/60 + 24/3600 )=-47.04 lon dd.ff= - (73 + 28/60 + 48/3600)=-73.48 转换后的 DD 格式的坐标为 -47.04 和 -73.48。
5、在经纬度和 UTM 坐标之间进行转换
十进制坐标可通过一个六分仪和一个记时计确定,与此不同的是,必须通过计算才能确定 UTM 坐标。虽然这些计算无非是最基本的三角形和代数计算,但是所使用的公式非常复杂。请参考IBM知识库
把坐标系变为柱坐标系后,柱坐标系的X方向指向径向,Y方向是周向(theta),这样理解不能算错。
但是这里的Y方向,也就是周向,不能完全理解成转动。因为即使坐标系改为柱坐标系后,节点坐标系是不会变的,也就是说节点坐标系还是笛卡尔坐标系,Y方向的位移应该认为沿圆周的切向位移,仍然为直线方向,不会是绕圆心的转动方向。
基于这点对位移的解释,相对于力来说,我的理解是此时Y方向相当于周向的切向力,如果乘以半径,应该是能算是扭矩。如果我的理解是对的,那么再转换回笛卡尔坐标系后,应该不会产生变化。
希望大家都来讨论讨论,共勉啊。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.992秒