1、必须在无菌无尘环境下进行操作;
2、检测人员必须通过国家临检中心业务培训并取得合格证书;
3、必须拥有标准的的PCR荧光实验室;
4、后PCR区PCR完成以后,应该留出一个专门用于反应后处理样品的地方。
扩展资料
PCR实验特点:
1、灵敏度高:PCR实验产物的生成量是以指数方式增加的,能从100万个细胞中检出一个靶细胞;在病毒的检测中,PCR的灵敏度可达3个RFU;在细菌学中最小检出率为3个细菌。
2、简便、快速:PCR实验反应一般在2~4 小时完成扩增反应。扩增产物一般用电泳分析,不一定要用同位素,无放射性污染、易推广。
3、纯度要求低:不需要分离病毒或细菌及培养细胞,DNA 粗制品及RNA均可作为扩增模板。可直接用临床标本如血液、体腔液、洗嗽液、毛发、细胞、活组织等DNA扩增检测。
参考资料来源:百度百科-PCR实验室
PCR操作注意事项:
1.从少量样品(1-10mg组织或102-104细胞)中提取RNA时可加入少许糖原以促进RNA沉淀。例如加800ml TRIzol匀浆样品,沉淀RNA前加5-10μg RNase-free糖原。糖原会与RNA一同沉淀出来,糖原浓度不高于4mg/ml是不影响第一链的合成,也不影响PCR反应。
2.匀浆后加氯仿之前样品可以在-60至-70℃保存至少一个月。RNA沉淀可以保存于75% 酒精中2-8℃一星期以上或-5至-20℃一年以上。
3.分层和RNA沉淀时也可使用台式离心机,2600*g离心30-60分钟。
预期产量:1mg组织或1*106细胞提取RNA分别为:
肝和脾6-10μg ,肾3-4μg,骨骼肌和脑组织1-1.5μg,胎盘1-4μg,上皮细胞8-15μg,成纤维细胞5-7μg
PCR产物的电泳检测时间 一般为48h以内,有些最好于当日电泳检测,大于48h后带型不规则甚致消失。
假阴性,不出现扩增条带 PCR反应的关键环节有①模板核酸的制备,②引物的质量与特异性,③酶的质量及, ④PCR循环条件。寻找原因亦应针对上述环节进行分析研究。
模板:①模板中含有杂蛋白质,②模板中含有Taq酶抑制剂,③模板中蛋白质没有消 化除净,特别是染色体中的组蛋白,④在提取制备模板时丢失过多,或吸入酚。⑤模 板核酸变性不彻底。
在酶和引物质量好时,不出现扩增带,极有可能是标本的消化处 理,模板核酸提取过程出了毛病,因而要配制有效而稳定的消化处理液,其程序亦应 固定不宜随意更改。 酶失活:需更换新酶,或新旧两种酶同时使用,以分析是否因酶的活性丧失或不够而 导致假阴性。
需注意的是有时忘加Taq酶或溴乙锭。 引物:引物质量、引物的浓度、两条引物的浓度是否对称,是PCR失败或扩增条带不 理想、容易弥散的常见原因。
有些批号的引物合成质量有问题,两条引物一条浓度 高,一条浓度低,造成低效率的不对称扩增,对策为:①选定一个好的引物合成单 位。②引物的浓度不仅要看OD值,更要注重引物原液做琼脂糖凝胶电泳,一定要有引物条带出现,而且两引物带的亮度应大体一致,如一条引物有条带,一条引物无条带,此时做PCR有可能失败,应和引物合成单位协商解决。
如一条引物亮度高,一条亮度低,在稀释引物时要平衡其浓度。③引物应高浓度小量分装保存,防止多次冻融或长期放冰箱冷藏部分,导致引物变质降解失效。
④引物设计不合理,如引物长度不够,引物之间形成二聚体等。 Mg2+浓度:Mg2+离子浓度对PCR扩增效率影响很大,浓度过高可降低PCR扩增的特 异性,浓度过低则影响PCR扩增产量甚至使PCR扩增失败而不出扩增条带。
反应体积的改变:通常进行PCR扩增采用的体积为20ul、30ul、50ul。或100ul,应用多 大体积进行PCR扩增,是根据科研和临床检测不同目的而设定,在做小体积如20ul 后,再做大体积时,一定要模索条件,否则容易失败。
物理原因:变性对PCR扩增来说相当重要,如变性温度低,变性时间短,极有可能出现假阴性;退火温度过低,可致非特异性扩增而降低特异性扩增效率退火温度过高影响引物与模板的结合而降低PCR扩增效率。有时还有必要用标准的温度计,检测一下扩增仪或水溶锅内的变性、退火和延伸温度,这也是PCR失败的原因之一。
靶序列变异:如靶序列发生突变或缺失,影响引物与模板特异性结合,或因靶序列某 段缺失使引物与模板失去互补序列,其PCR扩增是不会成功的。 假阳性 出现的PCR扩增条带与目的靶序列条带一致,有时其条带更整齐,亮度更高。
引物设计不合适:选择的扩增序列与非目的扩增序列有同源性,因而在进行PCR扩增时,扩增出的PCR产物为非目的性的序列。靶序列太短或引物太短,容易出现假阳性。
需重新设计引物。 靶序列或扩增产物的交叉污染:这种污染有两种原因:一是整个基因组或大片段的交叉污染,导致假阳性。
这种假阳性可用以下方法解决:操作时应小心轻柔,防止将靶序列吸入加样枪内或溅出离心管外。除酶及不能耐高温的物质外,所有试剂或器材均应高压消毒。
所用离心管及样进枪头等均应一次性使用。必要时,在加标本前,反应管和试剂用紫外线照射,以破坏存在的核酸。
二是空气中的小片段核酸污染,这些小片段比靶序列短,但有一定的同源性。可互相拼接,与引物互补后,可扩增出PCR产物,而导致假阳性的产生,可用巢式PCR方法来减轻或消除。
出现非特异性扩增带 PCR扩增后出现的条带与预计的大小不一致,或大或小,或者同时出现特异性扩增带 与非特异性扩增带。非特异性条带的出现,其原因:一是引物与靶序列不完全互补、或引物聚合形成二聚体。
二是Mg2+离子浓度过高、退火温度过低,及PCR循环次数 过多有关。其次是酶的质和量,往往一些来源的酶易出现非特异条带而另一来源的酶 则不出现,酶量过多有时也会出现非特异性扩增。
其对策有:必要时重新设计引 物。减低酶量或调换另一来源的酶。
降低引物量,适当增加模板量,减少循环次 数。适当提高退火温度或采用二温度点法(93℃变性,65℃左右退火与延伸)。
出现片状拖带或涂抹带 PCR扩增有时出现涂抹带或片状带或地毯样带。其原因往往由于酶量过多或酶的质量 差,dNTP浓度过高,Mg2+浓度过高,退火温度过低,循环次数过多引起。
其对策有:减少酶量,或调换另一来源的酶。②减少dNTP的浓度。
适当降低Mg2+浓 度。增加模板量,减少循环次数。
在做Northern等杂交实验、构建cDNA文库、获取能够编码真核生物蛋白的基因、获得RNA病毒基因时,会用到RNA提取和RT-PCR技术。
真核生物的基因组是DNA,为什么不直接从DNA PCR得到我们需要的基因呢?因为真核生物的基因含有大量的非编码区,称为内元(intron),真正编码蛋白的区段是被这些内元隔开的,这些编码区叫做外元(exon)。真核生物的DNA转录成为RNA之后,经过剪切和拼接,去掉这些非编码区,才形成成熟的mRNA,由mRNA再翻译成蛋白质。
所以,如果直接从真核生物的基因组DNA获取目的基因,克隆再表达,试图获取目的蛋白的思路是行不通的,因为获取的DNA里面会含有非编码区。要表达真核生物的基因并表达出相应的蛋白,只能通过提取其mRNA并RT-PCR这条颇费周折的途径。
1.RNA的提取 RNA的提取其实原理很简单:通过变性剂破碎细胞或者组织,然后经过氯仿等有机溶剂抽提RNA,再经过沉淀,洗涤,晾干,最后溶解。但是由于RNA酶无处不在,随时可能将RNA降解,所以实验中有很多地方需要注意,稍有疏忽就会前功尽弃。
1.1 分离高质量RNA 成功的cDNA合成来自高质量的RNA。高质量的RNA至少应保证全长并且不含逆转录酶的抑制剂,如EDTA或SDS。
RNA的质量决定了你能够转录到cDNA上的序列信息量的最大值。一般的RNA纯化方法是使用异硫氰酸胍/酸性酚的一步法。
一般不必使用oligo(dT)选择性分离poly(A)+RNA。不管起始模板是总RNA还是poly(A)+ RNA,都可以检测到扩增结果。
另外,分离poly(A)+RNA会导致样品间mRNA丰度的波动变化,从而使信息的检出和定量产生偏差。然而,当分析稀有mRNA时,poly(A)+RNA会增加检测的灵敏度。
1.2 RNA提取的最大影响因素-RNA酶 在所有RNA实验中,最关键的因素是分离得到全长的RNA。而实验失败的主要原因是核糖核酸酶(RNA酶)的污染。
由于RNA酶广泛存在而稳定,可耐受多种处理而不被灭活,如煮沸、高压灭菌等,RNA酶催化的反应一般不需要辅助因子。因而RNA制剂中只要存在少量的RNA酶就会引起RNA在制备与分析过程中的降解,而所制备的RNA的纯度和完整性又可直接影响RNA分析的结果,所以RNA的制备与分析操作难度极大。
在实验中,一方面要严格控制外源性RNA酶的污染;另一方面要最大限度地抑制内源性的RNA酶。外源性的RNA酶存在于操作人员的手汗、唾液等,也可存在于灰尘中。
在其它分子生物学实验中使用的RNA酶也会造成污染。这些外源性的RNA酶可污染器械、玻璃制品、塑料制品、电泳槽、研究人员的手及各种试剂。
而各种组织和细胞中则含有大量内源性的RNA酶。 1.3 常用的RNA酶抑制剂 *焦碳酸二乙酯(DEPC):是一种强烈但不彻底的RNA酶抑制剂。
它通过和RNA酶的活性基团组氨酸的咪唑环结合使蛋白质变性,从而抑制酶的活性。 *异硫氰酸胍:目前被认为是最有效的RNA酶抑制剂,它在裂解组织的同时也使RNA酶失活。
它既可破坏细胞结构使核酸从核蛋白中解离出来,又对RNA酶有强烈的变性作用。 *氧钒核糖核苷复合物:由氧化钒离子和核苷形成的复合物,它和RNA酶结合形成过渡态类物质,几乎能完全抑制RNA酶的活性。
*RNA酶的蛋白抑制剂(RNasin):从大鼠肝或人胎盘中提取得来的酸性糖蛋白。RNasin是RNA酶的一种非竞争性抑制剂,可以和多种RNA酶结合,使其失活。
*其它:SDS、尿素、硅藻土等对RNA酶也有一定抑制作用。 1.4 防止RNA酶污染的措施、RNA提取之前需要注意和准备的工作 *尽可能在实验室专门辟出RNA操作区,离心机、移液器、试剂等均应专用。
RNA操作区应保持清洁,并定期进行除菌。 *操作过程中应始终戴一次性橡胶手套和口罩,并经常更换,以防止手、臂上的细菌和真菌以及人体自身分泌的RNase带入各种容器内或污染用具。
尽量避免使用一次性塑料手套。塑料手套不仅常常给操作带来不便,而且塑料手套的多出部分常常将器具有RNase处传递到RNase-free处,扩大污染。
*尽量使用一次性的塑料制品,避免共用器具如滤纸、tips、tubes等,以防交叉污染。例如,从事RNA探针工作的研究者经常使用RNase H、T1等,在操作过程中极有可能造成移液器、离心机等的污染。
而这些污染了的器具是RNA操作的大敌。 *关于一次性塑料制品,建议使用厂家供应的出厂前已经灭菌的tips和tubes等。
多数厂家供应的无菌塑料制品很少有RNase污染,买来后可直接用于RNA操作。用DEPC等处理的塑料制品,往往由于二次污染而带有RNase,从而导致实验失败。
*所有的玻璃器皿均应在使用前于180℃的高温下干烤6hr或更长时间。 *无法用DEPC处理的用具可用氯仿擦拭若干次,这样通常可以消除RNase的活性。
*配制溶液用的乙醇、异丙醇、Tris等应采用未开封的新瓶装试剂。 *塑料器皿可用0.1% DEPC水浸泡或用氯仿冲洗(注意:有机玻璃器具因可被氯仿腐蚀,故不能使用)。
*有机玻璃的电泳槽等,可先用去污剂洗涤,双蒸水冲洗,乙醇干燥,再浸泡在3% H2O2 室温10min,然后用0.1% DEPC水冲洗,晾干。 *配制的溶液应尽可能的用0.1% DEPC,在37℃处理。
1. 引物的质量是保证PCR特异性的关键,引物过长或过短均会使特异性降低,以18~30bp为宜;引物中C+G含量宜在50%左右;引物内部和引物之间不应含有互补序列;引物的碱基顺序与非扩增区域的同源性应小于70%;引物的3'末端与模板DNA一定要配对,但末端没有严格的限制,故引物设计时可在5'末端加上限制性内切酶位点和/或启动密码ATG等;引物合成后必须纯化以去除合成产物中的不完整序列、脱嘌呤产物、碱基修饰链等“杂质”;引物的终浓度一般为0.2~0.5μmol/L,过低会影响反应产量,过高会增加引物二聚或错配的几率。
2. Taq DNA聚合酶具有5'→3'聚合酶活性和5'→3'外切酶活性,但无3'-5'外切酶活性,因此对单核苷酸的错配无校正功能,发生碱基错配的几率为 2.1*10-4左右。然而Taq DNA聚合酶的优势在于反应产量高于其他DNA聚合酶。
Stratagene推出的Pfu DNA聚合酶一直是研究人员心目中最好的高保真酶,而Pfu DNA聚合酶经基因工程改造后,新创出的Pfu Ultra具有更佳的校验活力。数据显示Pfu UltraTM高保真DNA聚合酶的平均错配率为Pfu DNA聚合酶的1/3,为Taq DNA聚合酶的1/18,是目前保真度最高的PCR酶(保真度=1/错误率) (数据来源:美国冷泉港实验室)。
3. Mg2+浓度也是影响反应效率和特异性的重要因素之一。Taq DNA聚合酶对Mg2+浓度非常敏感,Mg2+可与模板DNA、引物及dNTP等的磷酸根结合,不同反应体系中应适当调整MgCl2的浓度,一般以比 dNTP总浓度高出0.5~1.0mmol/L为宜,Mg2+过量能增加非特异扩增。
4. dNTP的浓度过高会增加碱基的错误掺入率,使反应特异性下降;过低则会导致反应速度下降。使用时4种dNTP必须以等当量浓度配制,均衡的dNTP有利于减少错配误差和提高使用效率。
5. 温度循环参数中应特别注意复性温度,它决定引物与模板的特异性结合。退火复性温度可根据引物的长度,通过Tm=4(G+C)+2(A+T) 计算得到。
在Tm允许的范围内,选择较高的退火温度可大大减少引物与模板之间的非特异结合。6. 减低污染的常规措施:①将PCR试剂、PCR产物及其他分子生物学试剂分开放置;②应保持样品制备、PCR反应液配制与PCR产物分析三个工作区的独立性;③使用阳性和阴性对照;④使用最高质量的水配制PCR实验的所有反应试剂;⑤配制好的PCR反应试剂应分成小包装储存,每个包装仅用于单次实验;⑥制备样品、配制试剂及反应液时必须戴手套;⑦实验前一定要认真清洁加样器等。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.873秒