1基本知识:乘除法运算归律
乘法结合律:三个数相乘,可以先把前两个数相乘后,再与后一个数相乘,或先把后两个数相乘后,再与前一个数相乘,积不变。即a*b*c=(a*b)*c=a*(b*c)
乘法分配律:两个数之和(或差)与一数相乘,可用此数先分别乘和(或差)中的各数,然后再把这两个积相加(或减)。即(a+b)*c=a*c+b*c,(a-b)*c=a*c-b*c。
乘法扩缩率:被除数和除数乘(或除)以同一个非零数,其商不变。即
a÷b=(a*n)÷(b*n)(n≠0)=(a÷m)÷(b÷m)(m≠0)
两数之和(或差)除以一个数,可以用这两个数分别除以那个数,然后再求两个商的和(或差)。即(a±b)÷c=a÷c±b÷c;在连除中,可以交换除数的位置,商不变。即a÷b÷c=a÷c÷b
2乘、除法混合运算的性质
(1)在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置。例如,
a*b÷c=a÷c*b=b÷c*a。
(2)在乘、除混合运算中,去掉或添加括号的规则去括号情形:
括号前是“*”时,去括号后,括号内的乘、除符号不变。即
a*(b*c)=a*b*c,
a*(b÷c)=a*b÷c。
括号前是“÷”时,去括号后,括号内的“*”变为“÷”,“÷”变为“*”。即
a÷(b*c)=a÷b÷c,
a÷(b÷c)=a÷b*c。
添加括号情形:加括号时,括号前是“*”时,原符号不变;括号前是“÷”时,原符号“*”变为“÷”,“÷”变为“*”。即
a*b*c=a*(b*c),
a*b÷c=a*(b÷c),
a÷b÷c=a÷(b*c),
a÷b*c=a÷(b÷c)。
(3)两个数之积除以两个数之积,可以分别相除后再相乘。即
(a*b)÷(c*d)
=(a÷c )*(b÷d)
=(a÷d)*(b÷c)。
上面的三个性质都可以推广到多个数的情形。
3基本技巧
凑整法
对于乘11,101,1001的速算法;.乘9,99,999的速算法
实际就是乘法的凑整速算。凑整速算是当乘数接近整十、整百、整千……的数时,将乘数表示成上述整十、整百、整千……与一个较小的自然数的和或差的形式,然后利用乘法分配律进行速算的方法。
对于乘5,25,125,625的速算法
将乘数先乘上这个较小的自然数,再除以这个较小的自然数,然后利用乘法结合律就可达到速算的目的,一个数乘以 5,25,125时,因为 5*2=10,25*4=100,125*8=1000,625*16=10000所以可以利用“乘一个数再除以同一个数,数值不变”及乘法结合律。
对于非标准形式分解因数凑整
有时题目不是上面讲的“标准形式”,比如乘数不是25而是75,此时就需要灵活运用上面的方法及乘法运算律进行速算了。把其中一个因数分解成两个因数相乘,3个因数再凑整先乘。
如1234x9998、1234x1001、96x125
56*625=(7*8)*(125*5)=(7*5)*(8*125)=35*1000=35000
几组特殊的乘积
3*37=111
9*37=333
27*37=999
7*11*13=1001
77*13=91*11=1001
111111111*111111111=12345678987654321
12345679*9=111111111 (记忆方法:9个1,前面的乘数叫无8数)
十字交叉法
任意两位数相乘,先用这两个数十位上的数字相乘所得的多少个“百”;再用乘数个位上的数字乘另一个乘数十位上的数字所得的数,加上乘数十位上的数字乘另一个乘数个位上的数字所得的积,表示几个“十”;最后两个个位上的数字相乘的得数表示几个“一”.
在总复习试卷上有这样的题: 1、2003年的9月1日是星期一,2004年的9月1日是星期几? 2、2005年的6月1日是星期三,2008年的6月1日是星期几? 全班只有两个学生做正确,我问其方法,只有一个人回答把天数相加,再除以7(不好意思,没上网查之前,我也只知道这种方法),另一个学生说是查日历知道的(呵呵,这也不失为一种方法)。
按照我的思路讲解后,我总觉得第2题做起来有点麻烦,有没有巧方法呢?回到家,一头扎入网海,哈哈,还真让我捞到了“宝贝”。下面,就让我一一展示给你吧,不过,你要既动脑,也动动手哟。
一、追溯来源: 星期制度是一种有古老传统的制度。据说因为《圣经·创世纪》中规定上帝用了六天时间创世纪,第七天休息,所以人们也就以七天为一个周期来安排自己的工作和生活,而星期日是休息日。
从实际的角度来讲,以七天为一个周期,长短也比较合适。所以尽管中国的传统工作周期是十天(比如王勃《滕王阁序》中说的“十旬休暇”,即是指官员的工作每十日为一个周期,第十日休假),但后来也采取了西方的星期制度。
二、提出问题: 在日常生活中,我们常常遇到要知道某一天是星期几的问题。有时候,我们还想知道历史上某一天是星期几。
通常,解决这个方法的有效办法是看日历,但是我们总不会随时随身带着日历,更不可能随时随身带着几千年的万年历。假如是想在计算机编程中,计算某一天是星期几,预先把一本万年历存进去就更不现实了。
这时候是不是有办法通过什么公式,从年月日推出这一天是星期几呢? 三、解决问题: 1、方法: 答案是肯定的。其实我们也常常在这样做。
我们先举一个简单的例子。比如,知道了2004年5月1日是星期六,那么2004年5月31日“世界无烟日”是星期几就不难推算出来。
我们可以掰着指头从1日数到31日,同时数星期,最后可以数出5月31日是星期一。其实运用数学计算,可以不用掰指头。
我们知道星期是七天一轮回的,所以5月1日是星期六,七天之后的5月8日也是星期六。在日期上,8-1=7,正是7的倍数。
同样,5月15日、5月22日和5月29日也是星期六,它们的日期和5月1日的差值分别是14、21和28,也都是7的倍数。那么5月31日呢?31-1=30,虽然不是7的倍数,但是31除以7,余数为2,这就是说,5月31日的星期,是在5月1日的星期之后两天。
星期六之后两天正是星期一。又如,第1题:2003年的9月1日是星期一,从2003年的9月1日到2004年的9月1日(2004年是闰年,2月29天),一共有366天,366除以7,余2,从星期一往后数两天,就是星期三,所以,2004年的9月1日是星期三。
2、思路: 这个简单的计算告诉我们计算星期的一个基本思路:首先,先要知道在想算的日子之前的一个确定的日子是星期几,拿这一天做为推算的标准,也就是相当于一个计算的“原点”。其次,知道想算的日子和这个确定的日子之间相差多少天,用7除这个日期的差值,余数就表示想算的日子的星期在确定的日子的星期之后多少天。
如果余数是0,就表示这两天的星期相同。显然,如果把这个作为“原点”的日子选为星期日,那么余数正好就等于星期几,这样计算就更方便了。
3、弊病: 但是直接计算两天之间的天数,还是不免繁琐。比如上面第2题:2005年的6月1日是星期三,从2005年的6月1日到2008年的6月1日,一共有1096天,除以7,余4,从星期三往后数四天,正好是星期天,也就是说,2008年的6月1日是星期天。
做这题,中间经过2006年、2007年,这两年是平年,每年365天,2008年是闰年,2月份是29天,这些都要考虑清楚,稍不注意就容易出错。又如1980年7月29日和2007年6月 1日之间相隔的天数,就不是一下子能算出来的。
这里涉及到1980年7月29日后到同年年底的的天数,2007年1月1日到6月1日之前的天数,还涉及平年、闰年,计算起来更复杂了。有没有简单、实用的方法呢? 四、优化方法:巧算 现在已经有了,只要记住了公式,知道相关字母表示什么意思,就能很快算出任何一天是星期几,犹如随身带着一本万年历,岂不美哉! 这个公式由世纪数减一、年份末两位、月份和日数即可算出W,再除以7,得到的余数是几就表示这一天是星期几,余数为0,则是星期天。
唯一需要变通的是要把1月和2月当成上一年的13月和14月, C和y都按上一年的年份取值。因此,人们普遍认为这是计算任意一天是星期几的最好的公式。
这个公式最早是由德国数学家克里斯蒂安·蔡勒(Christian Zeller, 1822- 1899)在1886年推导出的,因此通称为蔡勒公式(Zeller's Formula)。 蔡勒公式: W = [C/4] - 2C + y + [y/4] + [13*(M+1) / 5] + d - 1 C是世纪数减一,y是年份后两位,M是月份(从3月开始,1月和2月要按上一年的13月和 14月来算,这时C和y均按上一年取值),d是日数。
求出W的值,再除以7,余几就是星期几,余数为0,则是星期天。 注意:[。
]表示只取整数部分 注意:公式中如计算得出负数,不能按习惯的余数的概念求余数,只能按数论中的余数的定义求余。为了方便计算,我们可以给它加上一个7的整数倍,使它变为一个正数,比如加上7、14、21、。
巧算公式
乘法:分配律=ac+ab=a(b+c)
结合律=abc=a(bc)
交换律=ab=ac
积不变性质=ab=(a÷c)*(bc)(c≠0)
加法:结合律=a+b+c=a+(b+c)
交换律=a+b=b+a
除法:a÷b÷c=a÷(b*c)(b≠0,c≠0)
商不变性质=a÷b=(a*d)÷(b*d)(b≠0,d≠0)=(a÷d)÷(b÷d)(b≠0,d≠0)
减法:a-b-c=a-(b+c)
速算方法
全脑速算是模拟电脑运算程序而研发的快速脑算技术教程,它能使儿童快速学会脑算任意数加、减、乘、除、乘方及验算。从而快速提高孩子的运算速度和准确率。
全脑速算的运算原理:
通过双手的活动来刺激大脑,让大脑对数字直接产生敏感的条件反射作用,达到快速计算的目的。
(1)以手作为运算器并产生直观的运算过程。
(2)以大脑作为存储器将运算的过程快速产生反应并表示出。
扩展资料
国际奥林匹克竞赛的目的是:发现鼓励世界上具有数学天份的青少年,为各国进行科学教育交流创造条件,增进各国师生间的友好关系。
这一竞赛1959年由东欧国家发起,得到联合国教科文组织的资助;第一届竞赛由罗马尼亚主办,1959年7月22日至30日在布加勒斯特举行,保加利亚、捷克斯洛伐克,匈牙利、波兰、罗马尼亚和苏联共7个国家参加竞赛。
以后国际奥林匹克数学竞赛都是每年7月举行(中间只在1980年断过一次),参赛国从1967年开始逐渐从东欧扩展到西欧、亚洲、美洲,最后扩大到全世界。2013年参加这项赛事的代表队有80余支。美国1974年参加竞赛,中国1985年参加竞赛。
经过40多年的发展,国际数学奥林匹克的运转逐步制度化、规范化, 有了一整套约定俗成的常规,并为历届东道主所遵循。
国际奥林匹克数学竞赛由参赛国轮流主办,经费由东道国提供;但旅费由参赛国自理。参赛选手必须是不超过20岁的中学生,每支代表队有学生6人;另派2名数学家为领队。试题由各参赛国提供,然后由东道国精选后提交给主试委员会表决,产生6道试题。
东道国不提供试题。试题确定之后,写成英、法、德、俄文等工作语言,由领队译成本国文字。主试委员会由各国的领队及主办国指定的主席组成。这个主席通常是该国的数学权威。
参考资料来源:百度百科-巧算
参考资料来源:百度百科-速算
解:80.7 *8.7+8.07*13
=8.07*10*8.7+8.07*13
=8.07*87+8.07*13
=8.07*(87+13)
=8.07*100
=807
【用到乘法分配律】
17÷51+(68分之1+51分之二)*17
=17/51 + 1/68 *17 + 2/51*17
=17/51 +17/68 +34/51
=17/51 +34/51 +17/68
=1 +1/4
=5/4 (即1.25)
【乘法分配律 合并同类项】
76*(23分之1-53分之1)+23*(53分之1+76分之1)-53*(23分之1-76分之1)
=76* 1/23 -76* 1/53 +23* 1/53 +23* 1/76 + -53*1/23 +53*1/76
【这一步先用乘法分配律乘出来,在合并同类项】
= 76/23 - 76/53 + 23/53 + 23/76 -53/23 + 53/76
= (76-53)/23 + (23-76)/53 + (23+53)/76
= 1 -1 +1
= 1
不懂请追问哦~
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.614秒