1、数学思维方法有哪些一、转化方法:转化思维,既是一种方法,也是一种思维。
转化思维,是指在解决问题的过程中遇到障碍时,通过改变问题的方向,从不同的角度,把问题由一种形式转换成另一种形式,寻求最佳方法,使问题变得更简单、更清晰。二、逻辑方法:逻辑是一切思考的基础。
罗辑思维,是人们在认识过程中借助于概念、判断、推理等思维形式对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的思维过程。罗辑思维,在解决逻辑推理问题时使用广泛。
三、逆向方法:逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的一种思维方式。敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深入地进行探索,树立新思想,创立新形象。
四、对应方法:对应思维是在数量关系之间(包括量差、量倍、量率)建立一种直接联系的思维方法。比较常见的是一般对应(如两个量或多个量的和差倍之间的对应关系)和量率对应。
五、创新方法:创新思维是指以新颖独创的方法解决问题的思维过程,通过这种思维能突破常规思维的界限,以超常规甚至反常规的方法、视角去思考问题,提得出与众不同的解决方案。可分为差异性、探索式、优化式及否定性四种。
六、系统方法:系统思维也叫整体思维,系统思维法是指在解题时对具体题目所涉及到的知识点有一个系统的认识,即拿到题目先分析、判断属于什么知识点,然后回忆这类问题分为哪几种类型,以及对应的解决方法。七、类比方法:类比思维是指根据事物之间某些相似性质,将陌生的、不熟悉的问题与熟悉问题或其他事物进行比较,发现知识的共性,找到其本质,从而解决问题的思维方法。
八、形象方法:形象思维,主要是指人们在认识世界的过程中,对事物表象进行取舍时形成的,是指用直观形象的表象,解决问题的思维方法。想象是形象思维的高级形式也是其一种基本方法。
如何锻炼自己的数学思维?一、做出来不如讲出来,听得懂不如说得通。做10道题,不如讲一道题。
孩子做完家庭作业后,家长不妨鼓励孩子开口讲解一下数学作业中的难题,我也在群里会经常发一些比较好的训练题,您也可以鼓励去想一想说一说,如果讲得好,家长还可进行小奖励,让孩子更有成就感。二、举一反三,学会变通。
举一反三出自孔子的《论语·述而》:“举一隅,不以三隅反,则不复也。”意思是说:我举出一个墙角,你们应该要能灵活的推想到另外三个墙角,如果不能的话,我也不会再教你们了。
后来,大家就把孔子说的这段话变成了“举一反三”这句成语,意思是说,学一件东西,可以灵活的思考,运用到其他相类似的东西上!在数学的训练中,一定要给孩子举一反三训练。一道题看似理解了,但他的思维可能比较直线,不多做几道举一反三或在此基础上变式的题,他还是转不过玩了。
举一反三其实就是“师傅领进门,学艺在自身”这句话的执行行为。三、建立错题本,培养正确的思维习惯每上第一次课,我所讲的课程内容都和学生的错题有关。
我通常把试卷中的错题摘抄出几个典型题,作为课堂的例题再讲一遍。而学生的反应,或是像没有见过,或是对题目非常熟悉,但没有思路。
这些现象的发生,都是学生没有及时总结的原因。所以第一次课后我都建议我的学生做一个错题本,像写日记一样,记录下自己的错题和错因分析。
一般来说,错题分为三种类型:第一种是特别愚蠢的错误、特别简单的错误;第二种就是拿到题目时一点思路都没有,不知道解题该从何下手,但是一看到答案却恍然大悟;第三种就是题目难度中等,按道理有能力做对,但是却做错了。尤其第二种、第三种,必须放到错题本上。
建立错题本的好处就是掌握了自己所犯错的类型,为防范一类错误成为习惯性的思维。四、图形推理是培养逻辑思维能力最好的工具假是真时真亦假,真是假时假亦真;逻辑思维是在规则的确定下而进行的思维,如果联系生活就属于非常规思维。
一切看似与生活毫无联系却自在法则约束规范的范围内。逻辑推理的“瞒天过海”可谓五花八门,好似一个万花筒,百变无穷,乐趣无穷。
几何图形是助其锻炼逻辑思维的好工具,经典的图形推理题总有其构思、思路、巧妙的思维;经典在于其看似变态,而实际解法却简而又简单。因此,多训练一些图形推理题,对其逻辑思维很有帮助。
(1)追根究底,培养思维的深刻性 思维的深刻性指善于透过纷繁复杂的表面现象发现问题本质。
在数学教学中,对于概念中的重点字、词,教师要进行强调,并讲清它们的含义;对于数学定理、公理中的条件和结论,要彻底讲清楚,要让学生深刻地理解所学的知识,对所学的知识追根究底,透过现象看本质,抓住问题的本质所在;对于数学中相关联的内容,要引导学生学会对比和类比,使他们通过比较,加深对所学知识的理解,同时也有助于对所学知识的记忆 。 (2)多角度、多层次考虑问题,培养学生思维的广阔性 思维的广阔性指善于全面地考察问题,从事物多种多样的联系和关系中去认识事物。
在数学教学中,要教育学生学会多角度、多层次、全面地思维,找到数学知识间的内在联系。我们知道数学知识间的联系是无处不在的,如:一元二次方程、二次函数和一元二次不等式就联系密切;二次函数中,函数值为零就变成了一元二次方程;函数值大于或小于零时,就是一元二次不等式,找到知识间的联系后,就能很快地利用二次函数的图象,解一元二次不等式。
在数学教学中不仅要把握数学问题的整体,而且要抓住它的基本特征和特殊因素,找到问题的突破口,从而解决数学问题,这样有利于培养学生思维的广阔性。 (3)活学活用,培养思维的灵活性 思维的灵活性是指能够根据客观条件的发展和变化及时地改变方法,寻找新的解决问题的途径。
在数学教学中,教师要让学生在掌握所学知识的同时,还要注意教授学生一些数学的基本思维和方法,如:化归的思维方法、转化的思维方法、比较的方法、形与数互相结合和转化的思维方法,以及在解题时经常用到的分析法和综合法等等,帮助学生在解题时,寻找问题的突破口,抓住问题实质,提高分析问题、解决问题的能力。对于数学中的公式,要让学生知道公式的正用、逆用、变用、活用、巧用及综合运用,能灵活地运用公式,解答数学题。
教师要鼓励学生用非常规的方法去解题,大胆尝试,这都有利于培养学生思维的灵活性,要克服思维的呆板,避免循规蹈矩,提高应变能力。 (4)多练精练,培养思维的敏捷性 思维的敏捷性是指思维过程的简缩性和快速性。
数学教学中,做题是必不可少的一个重要环节,只有做一定量的题,才能掌握数学知识。教师在教学中,可以通过适当的练习,让学生掌握所学的知识,熟悉所学的公式,学会解题的方法和技巧,能迅速从题中抓住本质,找到解题的关键。
练习题要精选,既要达到巩固所学知识的目的,又要避免同一类型的题大量地重复做,只有这样才能做到在解题时,正确地、敏捷地解出答案。 (5)鼓励发散思维,培养思维的创造性 思维的创造性是指独立思考创造出有社会(或个人) 价值的具有新颖性成分的成果的智力品质。
创造性思维是创造力的核心。心理学家吉尔福特认为智力结构中的每一种能力都与创新有关,但发散思维与创新的关系最为密切。
发散思维是一种开放性的思维。在数学教学中,要启发学生多思考、多提问。
勤思善问是创新思维的开始,教师应当允许学生有不同的看法和新见解,对于学生的探索精神以及独到的、新颖的解题方法或解题思路,教师要给予肯定和鼓励。在平时的例题讲解中,采用题型发散、解法发散、纵横发散、变更命题发散、转化发散、迁移发散等多种形式,对学生进行多思、多变、多解的解题辅导,使他们思考问题时,注重多途径、多方案,解决问题时注重举一反三,触类旁通,这对于培养学生思维的创造性至关重要。
要让学生在思想上摆脱传统的习惯,多从反习惯、反传统、反常规思路上考虑问题,要提倡做题时,能标新立异、独辟蹊径、推陈出新,这些都有助于提高学生思维的创新能力。 (6)学会检验,培养思维的批判性 思维的批判性是指思考问题时,不受别人暗示的影响,能严格而客观地评价、检验思维的结果的思维品质。
在数学教学中,教师不仅要教给学生能解出结果,而且要让他们知道来龙去脉,并教给他们要用各种方式进行检验,要检验自己的结论是否正确、是否符合题意,去伪存真,能够及时找到问题所在,并自行改正,养成检验的好习惯。另外教师在数学教学中,还要针对学生容易出错的地方,讲一些错例辨析题,通过这类型题的比较,让学生发现问题所在,提高他们的辨误水平,避免再犯同样的错误。
告诉学生,凡事要自己去思考,不要盲从、不要迷信,有批判地接受,要敢于和善于发现问题,这对提高他们思维的批判性是有益处的。对学生数学思维品质的培养,是数学教学的一项重要任务,它不是一朝一夕的事,数学教师要在传授知识的同时,注意对学生思维品质的培养,提高学生的思维能力,教师要大胆改革教学,提高学生的数学素质。
(7)突出情感教育,激发思维的积极性 ①激发学习兴趣。我国数学家王梓坤院士教导我们:“数学教师的职责之一就在于培养学生对数学的兴趣,这等于给了他们长久钻研数学的动力,优秀的数学教师之所以在学生中永志不忘,就是由于他点燃了学生心灵中热爱数学的熊熊火焰。”
因此,教师可以利用创设问题情境,利用教学认知矛盾,揭示新旧知识的联系,以。
思维能力的训练是一种有目的、有计划、有系统的教育活动。
对它的作用不可轻估。人的天性对思维能力具有影响力,但后天的教育与训练对思维能力的影响更大、更深。
许多研究成果表明,后天环境能在很大程度上造就一个新人。 思维能力的训练主要目的是改善思维品质,提高学生的思维能力,只要能实际训练中把握住思维品质,进行有的放矢的努力,就能顺利地卓有成效地坚持下去。
思维并非神秘之物,尽管看不见,摸不着,来无影,去无踪,但它却是实实在在,有特点、有品质的普遍心理现象。 (1) 推陈出新训练法 当看到、听到或者接触到一件事情、一种事物时,应当尽可能赋予它们的新的性质,摆脱旧有方法束缚,运用新观点、新方法、新结论,反映出独创性,按照这个思路对学生进行思维方法训练,往往能收到推陈出新的结果。
(2) 聚合抽象训练法 把所有感知到的对象依据一定的标准“聚合”起来,显示出它们的共性和本质,这能增强学生的创造性思维活动。这个训练方法首先要对感知材料形成总体轮廓认识,从感觉上发现十分突出的特点;其次要从感觉到共性问题中肢解分析,形成若干分析群,进而抽象出本质特征;再次,要对抽象出来的事物本质进行概括性描述,最后形成具有指导意义的理性成果。
(3) 循序渐进训练法 这个训练 法对学生的思维很有裨益,能增强领导者的分析思维能力和预见能力,能够保证领导者事先对某个设想进行严密的思考,在思维上借助于逻辑推理的形式,把结果推导出来。 (4) 生疑提问训练法 此训练法是对事物或过去一直被人认为是正确的东西或某种固定的思考模式敢于并且善于或提出新观点和新建议,并能运用各种证据,证明新结论的正确性。
这也标志着一个学生创新能力的高低。训练方法是:首先,每当观察到一件事物或现象时,无论是初次还是多次接触,都要问“为什么”,并且养成习惯;其次,每当遇到工作中的问题时,尽可能地寻求自身运动的规律性,或从不同角度、不同方向变换观察同一问题,以免被知觉假象所迷惑。
(5) 集思广益训练法 此训练法是一个组织起来的团体中,借助思维大家彼此交流,集中众多人的集体智慧,广泛吸收有益意见,从而达到思维能力的提高。此法有利于研究成果的形成,还具有潜在的培养学生的研究能力的作用。
因为,当一些富个性的学生聚集在一起,由于各人的起点、观察问题角度不同,研究方式、分析问题的水平的不同,产生种种不同观点和解决问题的办法。通过比较、对照、切磋,这之间就会有意无意地学习到对方思考问题的方法,从而使自己的思维能力得到潜移默化的改进。
数学是开发思维的一门学科,同时也是学技术的基础,如物理,化学,机械,计算机,光电技术都需要数学做基础,数学不学好,学这些时就困难了.所以,数学一定要学好.
为上大学做做准备.
学习要安排一个简单可行的计划, 改善学习方法.同时也要适当参加学校的活动,全面发展.
在学习过程中,一定要:多听(听课),多记(记重要的题型结构,记概念,记公式),多看(看书),多做(做作业),多问(不懂就问),多动手(做实验),多复习,多总结.用记课堂笔记的方法集中上课注意力.
其他时间中,一定要保证学习时间,保证各科的学习质量,不能偏科.
每天要保证足够的睡眠(8小时),保证学习效率.
安排适当的自由时间用于与家人和朋友的交往及其他活动.
通过不懈的努力,使成绩一步一步的提高和稳固.对考试尽力, 考试时一定要心细,最后冲刺时,一定要平常心.考试结束后要认真总结,以便于以后更好的学习.
眼下:放下包袱,平时:努力学习.考前:认真备战,考试时:不言放弃,考后:平常心.切记!
成功永远来自于不懈的努力,成功永远属于勤奋的人.祝你成功.
★怎样才能学好数学? 要回答这个似乎非常简单:把定理、公式都记住,勤思好问,多做几道题,不就行了。
事实上并非如此,比如:有的同学把书上的黑体字都能一字不落地背下来,可就是不会用;有的同学不重视知识、方法的产生过程,死记结论,生搬硬套;有的同学眼高手低,“想”和“说”都没问题,一到“写”和“算”,就漏洞百出,错误连篇;有的同学懒得做题,觉得做题太辛苦,太枯燥,负担太重;也有的同学题做了不少,辅导书也看了不少,成绩就是上不去,还有的同学复习不得力,学一段、丢一段。 究其原因有两个:一是学习态度问题:有的同学在学习上态度暧昧,说不清楚是进取还是退缩,是坚持还是放弃,是维持还是改进,他们勤奋学习的决心经常动摇,投入学习的精力也非常有限,思维通常也是被动的、浅层的和粗放的,学习成绩也总是徘徊不前。
反之,有的同学学习目的明确,学习动力强劲,他们拥有坚韧不拔的意志、刻苦钻研的精神和自主学习的意识,他们总是想方设法解决学习中遇到的困难,主动向同学、老师求教,具有良好的自我认识能力和创造学习条件的能力。二是学习方法问题:有的同学根本就不琢磨学习方法,被动地跟着老师走,上课记笔记,下课写作业,机械应付,效果平平;有的同学今天试这种方法、明天试那种方法,“病急乱投医”,从不认真领会学习方法的实质,更不会将多种学习方法融入自己的日常学习环节,养成良好的学习习惯;更多的同学对学习方法存在片面的、甚至是错误的理解,比如,什么叫“会了”?是“听懂了”还是“能写了”,或者是“会讲了”?这种带有评价性的体验,对不同的学生来说,差异是非常大的,这种差异影响着学生的学习行为及其效果。
由此可见,正确的学习态度和科学的学习方法是学好数学的两大基石。这两大基石的形成又离不开平时的数学学习实践,下面就几个数学学习实践中的具体问题谈一谈如何学好数学。
一、数学运算 运算是学好数学的基本功。初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程。
初中运算能力不过关,会直接影响高中数学的学习:从目前的数学评价来说,运算准确还是一个很重要的方面,运算屡屡出错会打击学生学习数学的信心,从个性品质上说,运算能力差的同学往往粗枝大叶、不求甚解、眼高手低,从而阻碍了数学思维的进一步发展。从学生试卷的自我分析上看,会做而做错的题不在少数,且出错之处大部分是运算错误,并且是一些极其简单的小运算,如71-19=68,(3+3)2=81等,错误虽小,但决不可等闲视之,决不能让一句“马虎”掩盖了其背后的真正原因。
帮助学生认真分析运算出错的具体原因,是提高学生运算能力的有效手段之一。在面对复杂运算的时候,常常要注意以下两点: ①情绪稳定,算理明确,过程合理,速度均匀,结果准确; ②要自信,争取一次做对;慢一点,想清楚再写;少心算,少跳步,草稿纸上也要写清楚。
二、数学基础知识 理解和记忆数学基础知识是学好数学的前提。 ★什么是理解? 按照建构主义的观点,理解就是用自己的话去解释事物的意义,同一个数学概念,在不同学生的头脑中存在的形态是不一样的。
所以理解是个体对外部或内部信息进行主动的再加工过程,是一种创造性的“劳动”。 理解的标准是“准确”、“简单”和“全面”。
“准确”就是要抓住事物的本质;“简单”就是深入浅出、言简意赅;“全面”则是“既见树木,又见森林”,不重不漏。对数学基础知识的理解可以分为两个层面:一是知识的形成过程和表述;二是知识的引申及其蕴涵的数学思想方法和数学思维方法。
★什么是记忆? 一般地说,记忆是个体对其经验的识记、保持和再现,是信息的输入、编码、储存和提取。借助关键词或提示语尝试回忆的方法是一种比较有效的记忆方法,比如,看到“抛物线”三个字,你就会想到:抛物线的定义是什么?标准方程是什么?抛物线有几个方面的性质?关于抛物线有哪些典型的数学问题?不妨先写下所想到的内容,再去查找、对照,这样印象就会更加深刻。
另外,在数学学习中,要把记忆和推理紧密结合起来,比如在三角函数一章中,所有的公式都是以三角函数定义和加法定理为基础的,如果能在记忆公式的同时,掌握推导公式的方法,就能有效地防止遗忘。 总之,分阶段地整理数学基础知识,并能在理解的基础上进行记忆,可以极大地促进数学的学习。
三、数学解题 学数学没有捷径可走,保证做题的数量和质量是学好数学的必由之路。 1、如何保证数量? ① 选准一本与教材同步的辅导书或练习册。
② 做完一节的全部练习后,对照答案进行批改。千万别做一道对一道的答案,因为这样会造成思维中断和对答案的依赖心理;先易后难,遇到不会的题一定要先跳过去,以平稳的速度过一遍所有题目,先彻底解决会做的题;不会的题过多时,千万别急躁、泄气,其实你认为困难的题,对其他人来讲也是如此,只不过需要点时间和耐心;对于例题,有两种处理方式:“先做后看”与。
数学是开发思维的一门学科,同时也是学技术的基础,如物理,化学,机械,计算机,光电技术都需要数学做基础,数学不学好,学这些时就困难了.所以,数学一定要学好.为上大学做做准备. 学习要安排一个简单可行的计划, 改善学习方法.同时也要适当参加学校的活动,全面发展.在学习过程中,一定要:多听(听课),多记(记重要的题型结构,记概念,记公式),多看(看书),多做(做作业),多问(不懂就问),多动手(做实验),多复习,多总结.用记课堂笔记的方法集中上课注意力.其他时间中,一定要保证学习时间,保证各科的学习质量,不能偏科.每天要保证足够的睡眠(8小时),保证学习效率.安排适当的自由时间用于与家人和朋友的交往及其他活动.通过不懈的努力,使成绩一步一步的提高和稳固.对考试尽力, 考试时一定要心细,最后冲刺时,一定要平常心.考试结束后要认真总结,以便于以后更好的学习.眼下:放下包袱,平时:努力学习.考前:认真备战,考试时:不言放弃,考后:平常心.切记!成功永远来自于不懈的努力,成功永远属于勤奋的人.祝你成功。
去百度文库,查看完整内容>内容来自用户:苹果大师1.推陈出新训练法当看到、听到或者接触到一件事情、一种事物时,应当尽可能赋予它们的新的性质,摆脱旧有方法束缚,运用新观点、新方法、新结论,反映出独创性,按照这个思路对学生进行思维方法训练,往往能收到推陈出新的结果。
(2)聚合抽象训练法把所有感知到的对象依据一定的标准“聚合”起来,显示出它们的共性和本质,这能增强学生的创造性思维活动。这个训练方法首先要对感知材料形成总体轮廓认识,从感觉上发现十分突出的特点;其次要从感觉到共性问题中肢解分析,形成若干分析群,进而抽象出本质特征;再次,要对抽象出来的事物本质进行概括性描述,最后形成具有指导意义的理性成果。
(3)循序渐进训练法这个训练法对学生的思维很有裨益,能增强领导者的分析思维能力和预见能力,能够保证领导者事先对某个设想进行严密的思考,在思维上借助于逻辑推理的形式,把结果推导出来。(4)生疑提问训练法此训练法是对事物或过去一直被人认为是正确的东西或某种固定的思考模式敢于并且善于或提出新观点和新建议,并能运用各种证据,证明新结论的正确性。
这也标志着一个学生创新能力的高低。训练方法是:首先,每当观察到一件事物或现象时,无论是初次还是多次接触,都要问“为什么。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.250秒