航空航天技术 为航空航天活动的顺利进行而创立的一系列高级复杂的施工作业程序。
它涉及人力资源配置,设备仪器搭配与安装使用等艰深的学术作业。是国家,民族,乃至整个人类发展的高度追求。
航空航天电子技术 航空航天电子技术(electronics for aeronautics and astronautics)[编辑本段]概述 应用于航空工程和航天工程的电子与电磁波理论和技术。在现代航空和航天工程中电子系统是重要的系统之一。
[编辑本段]组成 它按功能分为通信、导航、雷达、目标识别、遥测、遥控、遥感、火控、制导、电子对抗等系统。各种系统一般包括飞行器上的电子系统和相应的地面电子系统两部分,这两部分通过电磁波传输信号合成为一个系统。
和这些电子系统有关的电子理论和技术有通信理论、电磁场理论、电波传播、天线、检测理论和技术、编码理论和技术、信号处理技术等,而微电子技术和电子计算机技术则是提高各种电子系统性能的基础。它们的发展使飞行器上的电子系统进一步小型化和具有实时处理更大量数据的能力,进而使飞机的性能(机动能力、火控能力、全天候飞行、自动着陆等)大为提高,航天器的功能(科学探测、资源勘测、通信广播、侦察预警等)日益扩大。
[编辑本段]特点 一、航空航天飞行器上电子设备的特点是: ①要求体积小、重量轻和功耗小;②能在恶劣的环境条件下工作;③高效率、高可靠和长寿命。在高性能飞机和航天器上,这些要求尤为严格。
飞机和航天器的舱室容积、载重和电源受到严格限制。卫星上设备重量每增加1公斤,运载火箭的发射重量就要增加几百公斤或更多。
导弹和航天器要承受严重的冲击过载、强振动和粒子辐射等。一些航天器的工作时间很长,如静止轨道通信卫星的长达7~10年,而深空探测器的工作时间更长。
因此,航空航天用的电子元器件要经过极严格的质量控制和筛选,而电子系统的设计需要充分运用可靠性理论和冗余技术。 二、航空航天电子技术的主要发展方向是: ①充分利用电子计算机和大规模集成电路,提高航空航天电子系统的综合化、自动化和智能化水平;②提高实时信号处理和数据处理的能力和数据传输的速率;③发展高速率和超高速率的大规模集成电路;④发展更高频率波段(毫米波、红外、光频)的电子技术;⑤发展可靠性更高和寿命更长的各种电子元器件。
民航专业术语解释 本节内容介绍的是经常在民航相关新闻、文章中出现的一些常用专业用语、参数、缩略语的基本含义,可能涉及较深的专业知识,当然有些定义、介绍不够专业、严谨、准确,还请见谅,欢迎你提供相关资料。
本文内容在陆续增加和更新中,部分专业用语如在本站常用术语中或已有专文介绍后,将不在此作重复介绍。 复飞:GA(Go Around): 由于机场障碍或飞机本身发生故障(常见的是起落架放不下来),以及其他不宜降落的条件存在时,飞机中止着陆重新拉起转入爬升的过程,称为复飞。
飞机在着陆前有一个决断高度,在飞机下降到这一高度时,仍不具备着陆条件时,就应加大油门复飞,然后再次进行着陆,这一过程同起飞、着陆的全过程是一样的,一般经过一转弯、二转弯、三转弯、四转弯,然后对准跑道延长线再次着陆。如果着陆条件仍不具备,则可能再次复飞或飞到备用机场降落。
需要明确指出的是,复飞并不可怕,按程序进行复飞不会有任何危险,民航飞机降落前都预先设定了复飞程序,自动化程度高,这是一个很基本的飞行操作程序。 备降:当飞机不能或不宜飞往预定着陆机场或在该机场着陆时,而降落在其他机场,就称为备降。
发生备降的原因很多,主要有航路交通管制、天气状况不佳、预定着陆机场不接收、天气状况差、飞机发生故障等等。 备降机场:Alternate airport当飞机不能或不宜飞往预定着陆机场或在该机场着陆时可以飞往的另一个机场。
备降机场包括起飞备降机场、航路备降机场和目的地备降机场。 备降机场一般在起飞前都已预先选定好,只有发生某些特殊或紧急情况才会临时选择非计划中的备降机场降落。
可控飞行撞地:CFIT(Controlled flight into terrain) 在机组操纵原因造成的飞行事故中有一种叫做"可操纵的飞机撞地事故",即CFIT,就是在飞行中并不是由于飞机本身的故障,或发动机失效等原因发生的事故,而是由于机组在毫无觉察危险的情况下,操纵飞机撞山、撞地或飞入水中,而造成飞机坠毁或严重损坏和人员伤亡的事故。这类CFIT事故在整个飞行事故中的比例也是比较大的,据国外统计的资料,客机死亡人数约80%是由CFIT造成的。
缩小垂直间隔:RVSM(Reduced Vertical Separation Minimum) 即将现代喷气式民航客机巡航阶段所在用的飞行高度层FL290至FL410(含)之间的垂直间隔标准由2000英尺缩小到1000英尺,从而增加空域容量,提高航空公司的运行效益,减轻空中交通管制指挥的工作负荷。国际民航组织(ICAO)从70年代开始研究缩小垂直间隔标准的问题。
2002年1月,经有关国家民航当局和相关国际民航组织共同商讨,经过共达13次的工作会议,决定从2002年2月21日起在南中国海地区实施RVSM运行。未获得RVSM运行批准的航空器将不得在RVSM空域内运行,而只能在飞行高度层FL290以下飞行。
能见度:VIS(Visibility)是反映大气透明度的一个指标,航空界定义为具有正常视力的人在当时的天气条件下还能够看清楚目标轮廓的最大距离。能见度和当时的天气情况密切相关。
当出现降雨、雾、霾、沙尘暴等天气过程时,大气透明度较低,因此能见度较差。测量大气能见度一般可用目测的方法,也可以使用大气透射仪、激光能见度自动测量仪等测量仪器测量。
跑道视程:RVR (Runway Visual Range)在跑道中心线位置,驾驶员能看到跑道表面的标示或是跑道灯或中心线灯的距离。当机场地面能见度较差时由航空管制应向运行中航空器分段报告跑道视程数值包括接地段、中间段和滑离段的RVR数值。
空地数据链系统(飞机通信寻址和报告系统):ACARS(Aircraft Communication Addressing and Reporting System) ACARS是一个基于VHF(甚高频)的双向机载数据通信系统,为航空公司空地、地地大流量数据通信提供服务,实现各种信息的交换。一方面,它可以使飞行的飞机在无须机组成员干预的情况下自动向航空公司地面应用系统提供飞行动态、发动机参数等实时数据信息,同时也可以向地面传送其他各类信息,使航空公司运行控制中心在自己的应用系统上获得飞机的实时的、不间断的大量飞行数据及相关信息,及时掌握本公司飞机的动态,实现对飞机的实时监控,满足航务、运营、机务等各相关部门管理的需要;另一方面,地面可向空中飞行的飞机提供气象情报、航路情况、空中紧急故障排故措施等多种服务,提高飞行安全保障能力及对旅客的服务水平。
在常用的VHF地空通信频道日益饱和,信息传送量少、速度慢的状况下,这种双向的数据通信系统可显著地改善和提高地面、空中通信保障能力。 目前,中国民航的空地数据链系统是一种面向字符型的数据链,不能传输数字语音和数据流文件,如气象云图等。
运行控制中心(AOC:Airplane Operating Control)AOC是是航空公司的指挥核心,保证航空公司运行安全的中枢,一种较为先进的运行生产管理模式。航空公司生产运作过去多是以调度为中心的运行生产管理模式,采用电传联系、手工记录和电话通知等手工操作模式,不仅速度慢,准确性也难以保证。
AOC的建立则可以改善这些不足之处,AOC实现航空公司的资源整。
航空
【航空术语】
飞行器在地球大气层内的航行活动为航空。气球,飞艇是利用空气的浮力在大气层内飞行,飞机则是利用与空气相互作用产生的空气动力在大气层内飞行。飞机上的发动机依靠飞机携带的燃料(汽油)和大气中的氧气工作。
航空与航天是20世纪人类认识和改造自然进程中最活跃、最有影响的科学技术领域,也是人类文明高度发展的重要标志。
人类在征服大自然的漫长岁月中,早就产生了翱翔天空、遨游宇宙的愿望。在生产力和科学技术水平都很低下的时代,这种愿望只能停留在幻想的阶段。虽然人类很早就做过种种飞行的探索和尝试,但实现这一愿望还是从18世纪的热空气气球升空开始的。
自从20世纪初第一架带动力的、可操纵的飞机完成了短暂的飞行之后,人类在大气层中飞行的古老梦想才真正成为现实。经过许多杰出人物的艰苦努力,航空科学技术得到迅速发展,飞机性能不断提高。
现代火箭的诞生,预示着载人航天时代的到来。
为给载人航天作准备,早在1964年底和1947年初,布劳恩在美国就用V-2火箭将孢子和果蝇等生物送入高空做实验。1948年6月和1951年4月,又将猴子送入高空。
1951年6月,苏联科罗廖夫也用地球物理火箭将两只小狗送入110千米高空,并安全回收。同年8月,苏联再次将两只小狗送入高空。
这年9月,美国又用探空火箭将1只猴子和11只老鼠等送入高空,并安全回收。由此可见,美苏为争夺载人航天“第一”,早就在进行着明争暗斗。
苏联在1957年10月发射成功世界上第一颗人造地球卫星以后,就着手载人航天的具体准备工作。1960年,从3000名候选人中精心挑选出第一批20名航天员,进行细致的培养训练。
与此同时,除继续用火箭将动物送入高空进行试验外,又用卫星和飞船携带动物进行轨道飞行试验。在此基础上,于1961年4月12日用东方1号飞船首先将尤里·加加林送入太空轨道,绕地球飞行一圈后胜利返回地球。
苏联首先发射成功洲际导弹和人造地球卫星以后,美国本想夺得载人航天这个“第一”。在1958年10月,就拟定了一个载人飞行的“水星”计划。
1959年4月,又先于苏联秘密地从喷气式飞机驾驶员中选拔了第一批7名航天员进行培训。怎奈其火箭技术不如人意,在加加林进入太空以前,“水星”计划的飞行试验频频失败。
美国只有两次携带猴子、一次携带猩猩、一次携带假人的亚轨道飞行成功。在苏联飞行成功后,美国只得改用较成熟的“红石”火箭,于1961年5月15日让勇敢的阿伦·谢泼德乘水星3号飞船做直上直下的亚轨道飞行,飞行时间约15分钟。
这年7月21日,维·格里索姆又乘水星4号进行一次同样的飞行。 可是,半个月后的8月6日,苏联航天员格·季托夫乘东方2号飞船绕地球飞行17圈后第二天返回。
面对这巨大的压力,美国人于这年9月13日才用“红石”火箭第一次将一艘携带假人的“水星”飞船送入轨道。同年11月29日,原本用于发射飞船的“宇宙神”火箭也终于将一艘携带有猩猩的“水星”飞船送入轨道。
火箭和飞船入轨的问题解决后,美国于1962年2月20日派约翰·格伦乘水星6号飞船绕地球飞行了3圈。5月24日,斯科特·卡本特乘水星7号飞船也绕地球飞行3圈。
与苏联竞争连连败北的美国决心迎头赶上,他们搞了个“阿波罗”计划,要首先送人上月球。1961年5月25日,美国总统肯尼迪批准这个计划,随即全国动员,要在60年代内将人送上月球,把“苏联人摔倒在月球上”。
为此,还将“水星”计划转为“阿波罗”计划服务。接着又实施了另一个载人飞行的“双子星座”计划,主要是积累长期载人航天的经验。
为摸清月面情况,从1961年8月到1968年1月,美国实施了“徘徊者”、“勘测者”和“月球轨道环行器”3个无人探月计划,查明月面有许多平滑的地方可容飞船降落;证实飞船在月面降落不会深陷下去,在月面行走不需要穿雪靴;为载人飞船选定了5个着陆点。 但在此期间,苏联也在暗中执行他们的载人登月计划。
1962年8月11日和12日苏联分别发射的两艘东方号飞船在轨道上会合作编队飞行。1963年6月14日,第一名女航天员瓦·捷列什科娃乘坐的飞船进入太空轨道后,也与另一艘飞船编队飞行。
1964年10月12日,上升1号携带3人飞行。1965年3月18日,苏联航天员阿·列昂诺夫走出上升2号密封座舱,进行了世界上的第一次太空行走。
这些显然都是载人登月所需要的。苏联还研制了世界上推力最大的N-1火箭,甚至已确定了首次登月的两名航天员。
好在美国的阿波罗号飞船和土星5号运载火箭的研制和试验还算顺利。但是,1967年1月27日阿波罗4A号飞船在地面演练时,纯氧座舱起火,3名航天员被烧死。
为检查和改进设计,又花去了10个月时间。 1967年10月,苏联两艘无人飞船在轨道上对接;1968年9月将海龟和植物种子等第一批生命送上月球;1969年1月两艘联盟号飞船对接,并从舱外交换航天员。
这每一项进展都成为刺激美国前进的动力。美国于1967年11月开始火箭和飞船的飞行试验,到1969年5月,共进行3次无人飞行、2次载人绕地球飞行、2次载人绕月球飞行。
登月的时刻终于到来了。 1969年7月16日,阿波罗11号飞船出发,7月20日登月舱降落在月面上。
经过近7小时的等待,尼·阿姆斯特朗于美国东部时间20日22时56分20秒踏上月面,并说出了那句永载史册的名言:“对一个人来说这是一小步,但对人类来说是一次飞跃。”随后,艾·奥尔德林也踏上月面。
到1972年12月,又有5艘阿波罗号飞船将10人送上月面。他们在月面上进行了许多科学考察和实验活动,共带回月球物质300多千克。
苏联的N-1火箭屡试屡败,在美国首先载人登月几成事实的1969年7月上旬,便声明“无意与美国争夺首先载人上月球”。
“长征”3号甲运载火箭 “长征”3号甲是在“长征”3号的基础上改进而成。
火箭全长52.52米,火箭直径、整流罩均超过“长征”3号。“长征”3号甲同样是三级液体助推火箭,一、二级为常规燃料,第三级为液氢液氧燃料。
第三级把直径由2.25米增大到了3米,并增加贮箱长度,推进剂由8.2吨增加到17.6吨。整个起飞重量240吨,起飞推力300吨,其同步转移轨道的运载能力由原来的1.4吨提高到26吨。
它是中国目前高轨道上运载能力最大的火箭,具有一箭多星和适应多种轨道卫星发射要求的能力。 1994年11月30日,“长征”3号甲火箭又把中国新一代通信卫星“东方红”3号发射升空。
“长征”3号甲不仅适用于各种大、小卫星发射的需要,而且其发展潜力很大。中国正在用它作芯级,并利用中国已经成熟的捆绑技术,发展“长征”3号乙、“长征”3号丙火箭,由此形成并利用中国运载能力最大的火箭群体,其中“长征”3号丙火箭的地球同步转移轨道运载能力可达到48吨。
长征三号甲运载火箭(CZ-3A)是一枚大型三级液体运载火箭,继承了长征三号运载火箭的成熟技术,采用了改进的液氢液氧第三级,其地球同步转移轨道(GTO)的运载能力有了很大的提高。由于拥有更灵活先进的控制系统,长征三号甲运载火箭可以在星箭分离前对有效载荷进行大姿态调姿定向,并提供可调整的卫星起旋速率,因而具有很强的适应性。
长征三号甲运载火箭为我国下一步研制的长征三号乙运载火箭(CZ-3B)及长征三号丙运载火箭(CZ-3C)创造了条件,成为我国GTO运载火箭的基本型。 长征三号甲运载火箭主要用于发射地球同步轨道有效载荷,同时兼顾低轨道(LEO)、太阳同步轨道(SSO)等其它轨道有效载荷的发射,也可进行一箭双星或多星的发射。
长征三号甲运载火箭的GTO运载能力为2.65吨,全箭起飞质241吨,全长52.5米,一、二子级直径3.35米、三子级直径3.0米,卫星整流罩最大直径3.35米。它的一子级和二子级使用偏二甲肼(UDMH)和四氧化二氮(N2O4)作为推进剂,三子级则使用效能更高的液氢(LH2)和液氧(LOX)。
全箭由箭体结构、动力系统、控制系统、遥测系统、外测安全系统、滑行段推进剂管理与姿态控制系统、低温推进剂利用系统、分离系统以及辅助系统等组成。 主要有六个系统:1.箭体结构,是火箭的主体。
2.控制系统,是火箭的大脑。由计算机、平台、分离机构等组成,由设计师事先设计好发射程序。
3.动力系统,由发动机、燃料箱等组成,是火箭的动力源。4.遥测系统,是将工作参数和监测数据由无线电传回地面的系统。
5.外侧安全系统,是火箭出现故障,地面无法操纵火箭的时候,进行空中自毁的系统。6.低温推进剂利用系统,是合理调控燃料混合比,有效利用燃料的系统。
长征三号甲运载火箭在1994年2月8日首次试验飞行,成功发射了两颗实验卫星。之后,连续五次成功地发射了五颗GTO通讯卫星。
长征三号甲运载火箭的所有六次发射完全成功,发射成功率达到100%。
飞行器在地球大气层内的航行活动为航空。
气球,飞艇是利用空气的浮力在大气层内飞行,飞机则是利用与空气相互作用产生的空气动力在大气层内飞行。飞机上的发动机依靠飞机携带的燃料(汽油)和大气中的氧气工作。
航空与航天是20世纪人类认识和改造自然进程中最活跃、最有影响的科学技术领域,也是人类文明高度发展的重要标志。 人类在征服大自然的漫长岁月中,早就产生了翱翔天空、遨游宇宙的愿望。
在生产力和科学技术水平都很低下的时代,这种愿望只能停留在幻想的阶段。虽然人类很早就做过种种飞行的探索和尝试,但实现这一愿望还是从18世纪的热空气气球升空开始的。
自从20世纪初第一架带动力的、可操纵的飞机完成了短暂的飞行之后,人类在大气层中飞行的古老梦想才真正成为现实。经过许多杰出人物的艰苦努力,航空科学技术得到迅速发展,飞机性能不断提高。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.777秒