再新颖的教学方法,学生不喜欢、不接受,也是白搭。
我认为学生是活的,死搬方法并不一定行得通。
从您的提问可以看出,您是一位尽责的老师,我建议您从自己的学生入手,分析他们每个人的不同情况,因材施教,才最有效!
我上初中时特别喜欢上数学课,却不是因为数学老师的教学方法有多新颖、多“不传统”,但是她生动活泼的讲课风格、幽默风趣的语言、深厚的数学功底、良好的师德、一视同仁的作风、耐心谦逊的品格,都让我们不得不敬佩她、喜爱她,更喜欢这门课!
作为初中生,学生对老师的印象直接影响到他们对这门课的喜爱程度,我认为一个好老师对学生真是太重要了!
兴趣是不可能被模式化的!
数学学习方法总结 一、多看 主要是指认真阅读数学课本。
把课本当成练习册。一般地,阅读可以分以下三个层次: 1。
课前预习阅读。预习课文时,要准备一张纸、一支笔,将课本中的关键词语、产生的疑问和需要思考的问题随手记下,对定义、公理、公式、法则等,可以在纸上进行简单的复述,推理。
重点知识可在课本上批、划、圈、点。这样做,不但有助于理解课文,还能帮助我们在课堂上集中精力听讲,有重点地听讲。
2。课堂阅读。
预习时,只对所要学的教材内容有一个大概的了解,不一定都已深透理解和消化吸收,因此有必要对预习时所做的标记和批注,结合老师的讲授,进一步阅读课文,从而掌握重点、关键,解决预习中的疑难问题。 3。
课后复习阅读。课后复习是课堂学习的延伸,既可解决在预习和课堂中仍然没有解决的问题,又能使知识系统化,加深和巩固对课堂学习内容的理解和记忆。
一节课后,必须先阅读课本,然后再做作业;一个单元后,应全面阅读课本,对本单元的内容前后联系起来,进行综合概括,写出知识小结,进行查缺补漏。 二、多想 主要是指养成思考的习惯,学会思考的方法。
独立思考是学习数学必须具备的能力。 在学习时,要边听(课)边想,边看(书)边想,边做(题)边想,通过自己积极思考,深刻理解数学知识,归纳总结数学规律,灵活解决数学问题,这样才能把老师讲的、课本上写的变成自己的知识。
三、多做 主要是指做习题,学数学一定要做习题,并且应该适当地多做些。做习题的目的首先是熟练和巩固学习的知识;其次是初步启发灵活应用知识和培养独立思考的能力;第三是融会贯通,把不同内容的数学知识沟通起来。
在做习题时,要认真审题,认真思考,应该用什么方法做?能否有简便解法?做到边做边思考边总结,通过练习加深对知识的理解。 四、多问 怎样才能发现和提出问题呢?第一,要深入观察,逐步培养自己敏锐的观察能力;第二,要肯动脑筋,。
发现问题后,经过自己的独立思考,问题仍得不到解决时,应当虚心向别人请教,向老师、同学、家长,向一切在这个问题上比自己强的人请教。不要有虚荣心,不要怕别人看不起。
只有善于提出问题、虚心学习的人,才有可能成为真正的学习上的强者。 学习方法是灵活多样、因人而异的,能不断改进自己的学习方法,是你学习能力不断提高的表现。
中学数学学习方法六要点 要学好数学,要把握好以下几要点,对于数学的学习成绩的提高,自学能力的养成肯定有促进的。 (一)制定合理学习计划,及时检查落实。
1.制定符合自己的实际情况的学习计划。 2、要有明确的学习目标。
通过一个阶段的学习,要达到什么水平,掌握那些知识等,这些都是在制定学习计划前应该非常明确。 3、长期目标和短期安排要相互结合好。
应先制定长期计划,据此确定短期学习安排,来促使长期学习计划的实现。学期计划,半期计划,月计划,周计划。
4、要合理安排计划。计划不能太古板,可根据执行过程中出现的新情况及时做适当调整。
5、措施落实要有力。可附带制定计划落实情况的自我检查表,以便监督自己如期完成学习目标。
(二)做好课前预习,提高听课效率。 通过预习,了解要学习的课程的主要内容和重、难点,预习的任务是通过初步阅读,先理解感知新课的内容(如概念、定义、公式、论证方法等),为顺利听懂新课扫除障碍。
1、预习的最佳时间是晚上的8:00到9:00这一段时间,单科的预习的时间一般控制在15分钟到30分钟左右。 2、课前预习:先看书做到:一、粗读,先粗略浏览教材的有关内容,了解本节知识的概貌也就是大体内容。
二、细读,对重要概念、公式、法则、定理反复阅读、体会、思考,注意该知识的形成过程,了解课程的内容的重、难点,新旧知识的联系及新知识在学科体系中的地位与意义,对难以理解的概念作出记号,以便带着疑问去听课,而后再做练习,通过练习来检查自己的预习时掌握的情况,最后再带着自己不懂的问题去听课。 (三)听好每一节课,解决疑点,吸纳新知。
耳到:就是专心听讲,听老师如何讲授,如何分析问题,如何归纳总结,另外,还要认真听同学们的答问,看它是否对自己有所启发。老师对一些重点难点会作出某些语言、强调的语气,听老师对每节课的学习要求;听知识引人及知识形成过程;听懂重点、难点剖析(尤其是预习中的疑点);听例题解法的思路和数学思想方法的体现;听好每节课的小结。
眼到:就是在听讲的同时看课本和板书,看老师讲课的表情,手势和演示实验的动作,接受老师某种动作的提示、以及所要表达的思想。 心到:集中注意力,避免走神,学习目标要明确,增强自己学习自觉性。
课堂上用心思考,跟上老师的教学思路,领会、分。
初中数学学习方法一、学会学习 五要:1、围绕老师讲述展开联想;2、理清教材文字叙述思路;3、听出教师讲述的重点难点;4、跨越听课的学习障碍,不受干扰;5、在理解基础上扼要笔记。
五先:1、先预习后听课;2、先尝试回忆后看书;3、先看书后做作业;4、先理解后记忆;5、先知识整理后入眠。 五会:1、会制定学习计划;2、会利用时间充分学习;3、会进行学习小结;4、会提出问题讨论学习;5、会阅读参考资料扩展学习。
二、学习数学应注意培养什么样的能力 1运算能力。2空间想象能力。
3逻辑思维能力。4将实际问题抽象为数学问题的能力。
5形数结合互相转化的能力。6观察、实验、比较、猜想、归纳问题的能力。
7研究、探讨问题的能力和创新能力。 三、掌握预习学习方法,培养数学自学能力预习就是在课前学习课本新知识的学习方法,要学好初中数学,首先要学会预习数学新知识,因为预习是听好课,掌握好课堂知识的先决条件,是数学学习中必不可少的环节。
数学的预习主要是看数学书,这需要我们既要动脑思考,还要动手练习。数学预习可以有“一划、二批、三试、四分”的预习方法。
以“方程和它的解”一节为例来说明这种预习方法。“一划”就是圈划知识要点,和“已知数”、“未知数”、“方程的解”、“解方程”几个基本概念,以及例1、例2下面“注意”提示内容都要圈画出来。
“二批”就是把预习时的体会、见解以及自己暂时不能理解的内容,批注在书的空白地方,对例1中判定y2+2=4y-1与2x2+5x+8是否是方程,为什么?说不出理由,这时我们可以把疑问批在此二题旁。“三试”就是尝试性地做一些简单的练习,检验自己预习的效果。
“四分”就是把自己预习的这节知识要点列出来,分出哪些是通过预习已掌握了的,哪些知识是自己预习不能理解掌握了的,需要在课堂学习中进一步学习。例如通过预习这节内容,我们可以列出以下知识要求:(1)什么是已知数,什么是未知数,什么是方程,什么是方程的解,什么是解方程。
(2)会判别一个式是否是方程,(3)会列一元一次方程,(4)会检验一个数是否是某一个方程的解。四、掌握课堂学习方法,提高课堂学习效果课堂学习是学习过程中最基本,最重要的环节。
数学课学习要坚持做到“五到”即耳到、眼到、口到、心到、手到。耳到:就是在听课的过程中,既要听老师讲的知识重点和难点,又要听同学回答问题的内容,特别要注意听自己预习未看懂的问题。
眼到:就是一看老师讲课的表情,手势所表达的意思,看老师的演示实验、板书内容,二看老师要求看的课本内容,把书上知识与老师课堂讲的知识联系起来。口到:就是自己预习时没有掌握的,课堂上新生的疑问,都提出来,请教老师或同学。
心到:就是课堂上要认真思考,注意理解课堂的新知识,课堂上的思考要主动积极。数学课堂学习有时是掌握例题的解法,有时是学会运用公式,关键是理解并能融汇贯通,灵活使用。
例如,证明任意三角形的中位线等于底边的一半,老师讲了例题,启发同学们思考,许多同学联想到平行四边形的性质与平行线辅助线的作法,很快可以思考出下列四种证法:对于老师讲的新概念,应抓住关键字眼,变换角度去理解。如命题“只有零和1的算术平方根是它本身”,可以改写为“如果一个数的算术平方根是它本身,那么这个数是零或1”。
手到:就是在听,看,思的同时,要适当地动手做一些笔记。五、掌握练习方法,提高解答数学题的能力数学的解答能力,主要通过实际的练习来提高。
数学练习应注意些什么问题呢?1.端正态度,充分认识到数学练习的重要性。不论是预习练习,课堂练习,还是课后作业,复习练习,都不能只满足于找到解题方法,而不动手具体练习一练。
实际练习不仅可以提高解答速度,掌握解答技能技巧,而且,许多的新问题常在练习中出现。2.要有自信心与意志力。
数学练习常有繁杂的计算,深奥的证明,自己应有充足的信心,顽强的意志,耐心细致的习惯。3.要养成先思考,后解答,再检查的良好习惯,遇到一个题,不能盲目地进行练习,无效计算,应先深入领会题意,认真思考,抓住关键,再作解答。
解答后,还应进行检查。4.细观察、活运用、寻规律、成技巧。
例如下列一组一元一次方程练习,通过细致观察,会获巧解。以上三题应精心观察去括号与去分母的技巧与注意事项。
以上两题要细心观察运用整体思想灵活变形,正确迅速解题。本题若不观察,按常规解法势必繁冗,联想到方程根的概念,可获精巧解答。
又如下题,若大胆联想,活用公式,转具体为抽象,用字母代替数,则可得巧解。已知: A=199301981*198101993,B=199301982*19810992,试比较A与B的大小。
解:设x=199301981,y=198101992则: A=x(y+1)=xy+x,B=y(x+1)=xy+y∵x>y,∴A>B.六、掌握复习方法,提高数学综合能力。复习巩固应注意掌握以下方法。
1.合理安排复习时间,“趁热打铁”,当天学习的功课当天必须复习,无论当天作业有多少,多难,都要巩固复习,一定要克服不看书复习就做作业,做不起再翻书,把书当成工具书查阅的不良习惯。2.广泛采用综合复习方法。
"数学是一切科学之母"、"数学是思维的体操",它是一门研究数与形的科学,它不处不在。
要掌握技术,先要学好数学,想攀登科学的高峰,更要学好数学。 数学,与其他学科比起来,有哪些特点?它有什么相应的思想方法?它要求我们具备什么样的主观条件和学习方法?本讲将就数学学科的特点,数学思想以及数学学习方法作简要的阐述。
一、数学的特点(一) 数学的三大特点严谨性、抽象性、广泛的应用性所谓数学的严谨性,指数学具有很强的逻辑性和较高的精通性,一般以公理化体系来体现。 什么是公理化体系呢?指得是选用少数几个不加定义的概念和不加逻辑证明的命题为基础,推出一些定理,使之成为数学体系,在这方面,古希腊数学家欧几里得是个典范,他所著的《几何原本》就是在几个公理的基础上研究了平面几何中的大多数问题。
在这里,哪怕是最基本的常用的原始概念都不能直观描述,而要用公理加以确认或证明。 中学数学和数学科学在严谨性上还是有所区别的,如,中学数学中的数集的不断扩充,针对数集的运算律的扩充并没有进行严谨的推证,而是用默认的方式得到,从这一点看来,中学数学在严谨性上还是要差很多,但是,要学好数学却不能放松严谨性的要求,要保证内容的科学性。
比如,等差数列的通项是通过前若干项的递推从而归纳出通项公式,但要予以确认,还需要用数学归纳法进行严格的证明。 数学的抽象性表现在对空间形式和数量关系这一特性的抽象。
它在抽象过程中抛开较多的事物的具体的特性,因而具有十分抽象的形式。它表现为高度的概括性,并将具体过程符号化,当然,抽象必须要以具体为基础。
至于数学的广泛的应用性,更是尽人皆知的。只是在以往的教学、学习中,往往过于注重定理、概念的抽象意义,有时却抛却了它的广泛的应用性,如果把抽象的概念、定理比作骨骼,那么数学的广泛应用就好比血肉,缺少哪一个都将影响数学的完整性。
高中数学新教材中大量增加数学知识的应用和研究性学习的篇幅,就是为了培养同学们应用数学解决实际问题的能力。 二、高中数学的特点往往有同学进入高中以后不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。
为什么会这样呢?让我们先看看高中数学和初中数学有些什么样的转变吧。 1、理论加强2、课程增多3、难度增大4、要求提高三、掌握数学思想高中数学从学习方法和思想方法上更接近于高等数学。
学好它,需要我们从方法论的高度来掌握它。我们在研究数学问题时要经常运用唯物辩证的思想去解决数学问题。
数学思想,实质上就是唯物辩证法在数学中的运用的反映。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,初步公理化思想,数形结合思想,运动思想,转化思想,变换思想。
例如,数列、一次函数、解析几何中的直线几个概念都可以用函数(特殊的对应)的概念来统一。又比如,数、方程、不等式、数列几个概念也都可以统一到函数概念。
再看看下面这个运用"矛盾"的观点来解题的例子。 已知动点Q在圆x2+y2=1上移动,定点P(2,0),求线段PQ中点的轨迹。
分析此题,图中P、Q、M三点是互相制约的,而Q点的运动将带动M点的运动;主要矛盾是点Q的运动,而点Q的运动轨迹遵循方程x02+y02=1①;次要矛盾关系:M是线段PQ的中点,可以用中点公式将M的坐标(x,y)用点Q的坐标表示出来。 x=(x0+2)/2 ②y=y0/2 ③显然,用代入的方法,消去题中的x0、y0就可以求得所求轨迹。
数学思想方法与解题技巧是不同的,在证明或求解中,运用归纳、演绎、换元等方法解题问题可以说是解题的技术性问题,而数学思想是解题时带有指导性的普遍思想方法。在解一道题时,从整体考虑,应如何着手,有什么途径?就是在数学思想方法的指导下的普遍性问题。
有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。只有在解题思想的指导下,灵活地运用具体的解题方法才能真正地学好数学,仅仅掌握具体的操作方法,而没有从解题思想的角度考虑问题,往往难于使数学学习进入更高的层次,会为今后进入大学深造带来很有麻烦。
在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。 要打赢一场战役,不可能只是勇猛冲杀、一不怕死二不怕苦就可以打赢的,必须制订好事关全局的战术和策略问题。
解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。一般地,在解题中所采取的总体思路,是带有原则性的思想方法,是一种宏观的指导,一般性的解决方案。
中学数学中经常用到的数学思维策略有: 以简驭繁、数形结全、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅如果有了正确的数学思想方法,采取了恰当的数学思维策略,又有了丰富的经验和扎实的基本功,一定可以学好高中数学。 四、学习方法的改进身处应试教育的怪圈,每个教师和学生都不由自主地陷入"题海"之中,教师拍心某种题型没。
初中数学是一个整体。
初二的难点最多,初三的考点最多。相对而言,初一数学知识点虽然很多,但都比较简单。
很多同学在学校里的学习中感受不到压力,慢慢积累了很多小问题,这些问题在进入初二,遇到困难(如学科的增加、难度的加深)后,就凸现出来。这里先列举一下在初一数学学习中经常出现的几个问题: 1、对知识点的理解停留在一知半解的层次上; 2、解题始终不能把握其中关键的数学技巧,孤立的看待每一道题,缺乏举一反三的能力; 3、解题时,小错误太多,始终不能完整的解决问题; 4、解题效率低,在规定的时间内不能完成一定量的题目,不适应考试节奏; 5、未养成总结归纳的习惯,不能习惯性的归纳所学的知识点;以上这些问题如果在初一阶段不能很好的解决,在初二的两极分化阶段,同学们可能就会出现成绩的滑坡。
相反,如果能够打好初一数学基础,初二的学习只会是知识点上的增多和难度的增加,在学习方法上同学们是很容易适应的。那怎样才能打好初一的数学基础呢?(1)细心地发掘概念和公式很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。
例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。
这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。
记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。
(2)总结相似的类型题目这个工作,不仅仅是老师的事,我们的同学要学会自己做。当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。
这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。
久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。我们的建议是:“总结归纳”是将题目越做越少的最好办法。
(3)收集自己的典型错误和不会的题目同学们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。
同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。
这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。
我们之所以建议大家收集自己的典型错误和不会的题目,是因为,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。我们的建议是:做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有收获。
(4)就不懂的问题,积极提问、讨论发现了不懂的问题,积极向他人请教。这是很平常的道理。
但就是这一点,很多同学都做不到。原因可能有两个方面:一是,对该问题的重视不够,不求甚解;二是,不好意思,怕问老师被训,问同学被同学瞧不起。
抱着这样的心态,学习任何东西都不可能学好。“闭门造车”只会让你的问题越来越多。
知识本身是有连贯性的,前面的知识不清楚,学到后面时,会更难理解。这些问题积累到一定程度,就会造成你对该学科慢慢失去兴趣。
直到无法赶上步伐。讨论是一种非常好的学习方法。
一个比较难的题目,经过与同学讨论,你可能就会获得很好的灵感,从对方那里学到好的方法和技巧。需要注意的是,讨论的对象最好是与自己水平相当的同学,这样有利于大家相互学习。
我们的建议是:“勤学”是基础,“好问”是关键。(5)注重实战(考试)经验的培养考试本身就是一门学问。
有些同学平时成绩很好,上课老师一提问,什么都会。课下做题也都会。
可一到考试,成绩就不理想。出现这种情况,有两个主要原因:一是,考试心态不不好,容易紧张;二是,考试时间紧,总是不能在规定的时间内完成。
心态不好,一方面要自己注意调整,但同时也需要经历大型考试来锻炼。每次考试,大家都要寻找一种适合自己的调整方法,久而久之,逐步适应考试节奏。
做题速度慢的问题,需要同学们在平时的做题中解决。自己平时做作业可以给自己限定时间,逐步提高效率。
另外,在实际考试中,也要考虑每部分的完成时间,避免出现不必要的慌乱。我们的建议是:把“做作业”当成考试,把“考试”当成做作业。
以上,我们就初一数学经常出现的问题,给出了建议,。
班级里边总是有很多的聪明人,但是他们的数学却是他们的黑洞,而那些学习好的学生我也没见的他们比谁聪明多少了,那为什么会有学习好和差呢?为什么别人总是学习好的呢?那是因为他们用对了学习数学的方式方法了,所以提高分数会很快.那么怎么样学初中数学就能超过那些比自己学习好的人了呢?
初中数学目录
数学可是幼儿园要一直学到大学的科目呢,无论如何都是不能放弃的呢!俗话说得好呢,"重复是记忆之母",这都是表达温习功课对于学好数学的重要性呢,就像我的一共而老师曾经说过每天把自己学的东西在睡觉之前在脑子里过一遍,就当是过电影了一样,想不起来的东西记住第二天再问老师或者是同学,然后第三天,第四天皆是如此,这样你学好数学就已经完成一大半了.
接下来的一半就是怎么样学初中数学的最关键的部分了.因为在平时的学习中,我们自己应该学会怎样归纳知识点,按照题型来归纳方式方法,解题的技巧,下面来看一下吧.
第一点:熟读课本,要课本看的透透的,首先你要看看目录,清楚这本书都准备讲什么,目录只是知识框架的一种最最基础的东西了,只要清楚了目录,怒也就明白大概这本书讲的是什么了,其次要按照每个章节每个章节的看,清楚的分开知识点,难点,最后都归纳在一起,也要看看书本当中的例题,要学会举一反三,一种题型的题目必须要做到全会,而有的人连书都不看,又怎么样学初中数学呢?
第二点:学习到某一个知识的时候,就把这个知识点所涉及到的题型全部从简单到困难都扩展凯,从简单的开始做,一直做到不会的题目,好好的请教别人在做,一直做到最后,彻底弄懂所有的题目,特别是对于特殊的题型和一般常见的,都需要在脑子当中刻画出来,不能忘记.
第三点:把一些你经常错的题目全部都整理出来,看看都是属于哪几种题型,把它弄懂,在以后的考试当中就不会在出现错误了.
辅导数学作业
第四点:数学所学习的公式都是必须要记住的,因为会在题目中用到,而且很关键,所以每天都要背一遍,在睡前在背一遍,第二天早上醒来在背一遍,以此类推,永久就不会忘记了.
最后,要仔细的对待数学这门科目,这可是能决定你以后上哪所大学的关键呢!怎么样学初中数学的方式方法到这里就结束了,希望同学们可以按照上边的方法做一遍,是会收获到很打的惊喜哦!
首先聪明和敏捷对于数学学习来说固然重要,但良好的学习方法可以把学习效果提高几倍,这是先天因素不可比拟的。
学好数学首先要过的是心理关。任何事情都有一个由量变到质变的循序渐进的积累过程。
一.预习。不等于浏览。
要深入了解知识内容,找出重点,难点,疑点,经过思考,标出不懂的,有益于听课抓住重点,还可以培养自学能力,有时间还可以超前学习。归纳出数学概念的学习方法 ⑴阅读概论,记住名称或符号。
⑵背诵定义,掌握特性。⑶举出正反实例,体会概念反映的范围。
⑷进行练习,准确地判断。⑤与其它概念进行比较,弄清概念间的关系。
2.数学公式的学习方法。公式具有抽象性,公式中的字母代表一定范围内的无穷多个数。
有的学生在学习公式时,可以在短时间内掌握,而有的学生却要反来复去地体会,才能跳出千变万化的数字关系的泥堆里。教师应明确告诉学生学习公式过程需要的步骤,使学生能够迅速顺利地掌握公式。
我们介绍的数学公式的学习方法是:⑴书写公式,记住公式中字母间的关系。⑵懂得公式的来龙去脉,掌握推导过程。
⑶用数字验算公式,在公式具体化过程中体会公式中反映的规律。⑷将公式进行各种变换,了解其不同的变化形式。
⑤将公式中的字母想象成抽象的框架,达到自如地应用公式。3.数学定理的学习方法。
一个定理包含条件和结论两部分,定理必须进行证明,证明过程是连接条件和结论的桥梁,而学习定理是为了更好地应用它解决各种问题。下面我们归纳出数学定理的学习方法:⑴背诵定理。
⑵分清定理的条件和结论。⑶理解定理的证明过程。
⑷应用定理证明有关问题。⑸体会定理与有关定理和概念的内在关系。
有的定理包含公式,如韦达定理、勾股定理、正弦定理,它们的学习还应该同公式的学习方法结合起来进行。㈤ 让学生学会自学的方法。
自学是指一个人较少依赖别人的帮助而独立地掌握知识、应用知识以及获取技能的自觉活动。自学是一生中最好的学习方法,主要包括独立阅读、独立思考、自我组织、自我检查和自我监督以及灵活运用知识解决问题等。
怎样才能有效地培养和发展学生的数学自学能力,形成自学本领呢?吴传汉在他的《数学的学习方法》中提出了“自学十会”,即一会独立读书,二会能进能出;三会错中取胜;四会精力聚焦;五会自选课题;六会自寻材料;七会解决问题;八会博采众长;九会合理用时;十会自我评价。同自学有关的学习方法,在国外流行有好几种,如SCORE学习法是由美国学者创造的一种高效的综合性的学习方法,流行世界各地,具体步骤是:浏览、抄标题、定目标、阅读、评估。
与此相似的另一种学习方法,也是美国人创造的,叫做SQL2R学习法,其具体步骤是浏览、问题、背诵、复习。用这两种方法进行自学,都可取得较好的效果。
在数学教材的自学过程中,我们根据数学的学科特点,分别提出代数自学法和几何自学法两种:1.代数学习法。⑴抄标题,浏览定目标。
⑵阅读并记录重点内容。⑶试作例题。
⑷快做练习,归纳题型。⑸回忆小结。
2.几何学习四大步。⑴.①书写标题,浏览教材,②自我讲授,写出目录;⑵.①按目录,读教材,②自我讲授几何概念及定理;⑶.①阅读例题,形成思路,②写出解答例题过程;⑷.①快做练习,②小结解题方法。
二.听讲。核心在课堂。
1。以听为主,兼顾记录。
2。注重过程,轻结论。
3.有重点。4。
提高听课效率。三.复习。
像演电影一样把课堂复习,整理笔记,四.多做练习。1。
晚上吃饭后,坐到书桌时,看数学最适合,2。做一道数学题,每一步都要多问个别为什么,不能只满足于老师课堂上的灌输式传授和书本上的简单讲述,要想提高必须要一步一步推,一步一步想,每个过程都必不可少,3。
不要粗心大意,4。做完每一道题,要想想为什么会想到这样做,大脑建立一种条件发射,关键在于每做一道题要从中得到东西,错在哪,5。
解题都有固定的套路。6还有大胆的夸奖自己,那是树立信心的关键时刻,五.总结。
1。要将所学的知识变成知识网,从大主干到分枝,清晰地深存在脑中,新题想到老题,从而一通百通。
2。建立错误集,错误多半会错上两次,在有意识改正的情况下,还有可能错下去,最有效的应该是会正确地做这道题,并在下次遇到同样情况时候有注意的意识。
3。周末再将一周做的题回头看一番,提出每道题的思路方法。
4有问题一定要问。六.考前复习,1。
前2周就要开始复习,做到心中有数,否则会影响发挥,再做一遍以前的错题是十分必要的,据说有一个同学平时只有一百零几,离高考只有一个月,把以前错题从头做一遍,最后他数学居然得了147分。2。
要重视基础,另外,听老师的话,勤学苦练不可少,成功没有捷径,要乐观,有毅力,要有决心,还要有耐心,学数学是一个很长的过程,你的努力于回报往往不能那么尽如人意的成正比,甚至会有下坡路的趋势,但只要坚持下去,那条成绩线会抬起头来,一定能看到光明。
你说你厌恶数学。
首先你要弄清楚为什么厌恶数学。是不是因为自己上了初中数学老是考不好,所以觉得很烦,于是开始觉得数学很讨厌呢?如果是的话,你首先要先调整一下自己的心态。
然后把初一的数学书拿出来看看,以你的基础应该很容易就可以理解吃透它的。等你把初一的知识吃透了,再来看初二的,你会发现其实很容易。
因为初中数学是一环扣一环的,如果你初一的没把握好,那么上初二是很费力的。对于知识的复习,主要是看书上的例题和一些重要的定理。
把书上的例题吃透了,定理理解了,考试就不成问题了,因为试卷上出的题是不可能脱离课本的。
一、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。
特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。
认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二、适当多做题,养成良好的解题习惯。 要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。
刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。
在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。
实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三、调整心态,正确对待考试。 首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。
调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。
由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。 如何学好数学2 高中生要学好数学,须解决好两个问题:第一是认识问题;第二是方法问题。
有的同学觉得学好教学是为了应付升学考试,因为数学分所占比重大;有的同学觉得学好数学是为将来进一步学习相关专业打好基础,这些认识都有道理,但不够全面。实际上学习教学更重要的目的是接受数学思想、数学精神的熏陶,提高自身的思维品质和科学素养,果能如此,将终生受益。
曾有一位领导告诉我,他的文科专业出身的秘书为他草拟的工作报告,因为华而不实又缺乏逻辑性,不能令他满意,因此只得自己执笔起草。可见,即使将来从事文秘工作,也得要有较强的科学思维能力,而学习数学就是最好的思维体操。
有些高一的同学觉得自己刚刚初中毕业,离下次毕业还有3年,可以先松一口气,待到高二、高三时再努力也不迟,甚至还以小学、初中就是这样“先松后紧”地混过来作为“成功”的经验。殊不知,第一,现在高中数学的教学安排是用两年的时间学完三年的课程,高三全年搞总复习,教学进度排得很紧;第二,高中数学最重要、也是最难的内容(如函数、立几)放在高一年级学,这些内容一旦没学好,整个高中数学就很难再学好,因此一开始就得抓紧,那怕在潜意识里稍有松懈的念头,都会削弱学习的毅力,影响学习效果。
至于学习方法的讲究,每位同学可根据自己的基础、学习习惯、智力特点选择适合自己的学习方法,我这里主要根据教材的特点提出几点供大家学习时参考。 l、要重视数学概念的理解。
高一数学与初中数学最大的区别是概念多并且较抽象,学起来“味道”同以往很不一样,解题方法通常就来自概念本身。学习概念时,仅仅知道概念在字面上的含义是不够的,还须理解其隐含着的深层次的含义并掌握各种等价的表达方式。
例如,为什么函数y=f(x)与y=f-1(x)的图象关于直线y=x对称,而y=f(x)与x=f-1(y)却有相同的图象;又如,为什么当f(x-l)=f(1-x)时,函数y=f(x)的图象关于y轴对称,而 y=f(x-l)与 y=f(1-x)的图象却关于直线 x=1 祝:学业有成!。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.971秒