悖论[汉语拼音] bèilùn[英文]paradox[简要解释] 逻辑学和数学中的“矛盾命题”[其他详尽解释]也可叫“逆论”,或“反论”,是指一种导致矛盾的命题。
悖论有点像魔术中的变戏法,它使人们在看完之后,几乎没有—个不惊讶得马上就想知道:“这套戏法是怎么搞成的?”当把技巧告诉他时,他就会不知不觉地被引进深奥而有趣的数学世界之中。正因为如此,悖论就成了一种十分有价值的教学手段。
悖论是属于领域广阔、定义严格的数学分支的一个组成部分,这一分支以“趣味数学”知名于世。这就是说它带有强烈的游戏色彩。
然而,切莫以为大数学家都看不起“趣味数学”问题。欧拉就是通过对bridge-crossing之谜的分析打下了拓扑学的基础。
莱布尼茨也写到过他在独自玩插棍游戏(一种在小方格中插小木条的游戏)时分析问题的乐趣。希尔伯特证明了切割几何图形中的许多重要定理。
冯·纽曼奠基了博弈论。最受大众欢迎的计算机游戏—生命是英国著名数学家康威发明的。
爱因斯坦也收藏了整整一书架关于数学游戏和数学谜的书。悖论(paradox)来自希腊语“para+dokein”,意思是“多想一想”。
这个词的意义比较丰富,它包括一切与人的直觉和日常经验相矛盾的数学结论,那些结论会使我们惊异无比。 悖论是自相矛盾的命题。
即如果承认这个命题成立,就可推出它的否定命题成立;反之,如果承认这个命题的否定命题成立,又可推出这个命题成立 如果承认它是真的,经过一系列正确的推理,却又得出它是假的;如果承认它是假的,经过一系列正确的推理,却又得出它是真的。 古今中外有不少著名的悖论,它们震撼了逻辑和数学的基础,激发了人们求知和精密的思考,吸引了古往今来许多思想家和爱好者的注意力。
解决悖论难题需要创造性的思考,悖论的解决又往往可以给人带来全新的观念。 例如比较有名的理发师悖论:某乡村有一位理发师,一天他宣布:只给不自己刮胡子的人刮胡子。
这里就产生了问题:理发师给不给自己刮胡子?如果他给自己刮胡子,他就是自己刮胡子的人,按照他的原则,他不能给自己刮胡子;如果他不给自己刮胡子,他就是不自己刮胡子的人,按照他的原则,他就应该给自己刮胡子。这就产生了矛盾。
1900年前后,在数学的集合论中出现了三个著名悖论,理发师悖论就是罗素悖论的一种通俗表达方式。此外还有康托尔悖论、布拉利—福尔蒂悖论。
这些悖论特别是罗素悖论,在当时的数学界与逻辑界内引起了极大震动。触发了数学的第三次危机。
悖论有三种主要形式。1.一种论断看起来好像肯定错了,但实际上却是对的(佯谬)。
2.一种论断看起来好像肯定是对的,但实际上却错了(似是而非的理论)。3.一系列推理看起来好像无懈可击,可是却导致逻辑上自相矛盾。
悖论有以下几类:逻辑悖论、概率悖论、几何悖论、统计悖论和时间悖论等。历史上著名的悖论 NO.1 说谎者悖论(1iar paradox or Epimenides' paradox) 最古老的语义悖论。
公元前6世纪古希腊哲学家伊壁孟德 所创的四个悖论之一。是关于“我正在撒谎”的悖论。
具体为:如果他的确正在撒谎,那么这句话是真的,所以伊壁孟德不在撤谎,如果他不在撒谎,那么这句话是假的,因而伊壁孟德正在撒谎。 NO.2 伊勒克特拉悖论(Eletra paradox) 逻辑史上最早的内涵悖论。
由古希腊斯多亚学派提出。它的基本内容是:伊勒克特拉有位哥哥奥列斯特回家了.尽管伊勒支持拉知道奥列斯特是她的哥哥.但她并不认识站在她面前的这个男人。
写成一个推理.即: 伊勒克持拉不知道站在她面前的这个人是她的哥哥。 伊勒克持拉知道奥列期特是她的哥哥。
站在她面前的人是奥列期特。 所以,伊勒克持拉既知道并且又不知道这个人是她的 哥哥。
NO.3 M:著名的理发师悖论是伯特纳德·罗素提出的。一个理发师的招牌上写着: 告示:城里所有不自己刮脸的男人都由我给他们刮脸,我也只给这些人刮脸。
M:谁给这位理发师刮脸呢? M:如果他自己刮脸,那他就属于自己刮脸的那类人。但是,他的招牌说明他不给这类人刮脸,因此他不能自己来刮。
M:如果另外一个人来给他刮脸,那他就是不自己刮脸的人。但是,他的招牌说他要给所有这类人刮脸。
因此其他任何人也不能给他刮脸。看来,没有任何人能给这位理发师刮脸了! NO.4 唐·吉诃德悖论 M:小说《唐·吉诃德》里描写过一个国家.它有一条奇怪的法律:每一个旅游者都要回答一个问题。
问,你来这里做什么? M:如果旅游者回答对了。一切都好办。
如果回答错了,他就要被绞死。 M:一天,有个旅游者回答—— 旅游者:我来这里是要被绞死。
M:这时,卫兵也和鳄鱼一样慌了神,如果他们不把这人绞死,他就说错了,就得受绞刑。可是,如果他们绞死他,他就说对了,就不应该绞死他。
两分法悖论 “在你穿过一段距离之前,必先穿过这个距离的一半。”
意思是说向着一个目的地运动的物体,首先必须经过路程的中点;然而要经过这点,又必须先经过路程的四分之一点;要过四分之一点又必须首先通过八分之一点等等,如此类推,以至无穷。由此得出的结论就是:运动是不可穷尽的过程,运动永远不可能有开始。
阿基里斯追龟 “阿基里斯追不上乌龟”是古希腊的一个哲学故事。阿基里斯是当时的一个善于长跑的人。
阿基里斯当然能够追上乌龟,用方程可以来解决。假设阿基里斯的速度为a,乌龟的速度为b,阿基里斯开始追赶乌龟的时候,乌龟在阿基里斯的前面,假设这段距离为c,请问需要多少时间阿基里斯可以追上乌龟。
设所需要的时间为x,那么ax=bx+c, x=c/(a-b).由于a b c都是常数,x当然可以求得一个解。当然如果a b 的差如果很小,那么解可以趋于无穷大。
但是在这个哲学故事里面和这个问题却毫无关系,在这个故事里面说阿基里斯追不上乌龟是说,不论阿基里斯比乌龟跑得有多快,他都追不上。 但是当我们引入无限分割的问题时,马上出现了变化。
如果我们故意这样思考:阿基里斯在追赶乌龟的过程中,或者追上乌龟之前,必须先走完乌龟当前已经超过他的距离。(这不是假设,而是确实应该的事情。
但是这种思维方式却是假定的,你可以用这样的思维方式,也可以不用。一旦用了这样的思维方式,就会使思维过程没有完结,从而使得阿基里斯追不上乌龟。)
按照这种思维方式,当阿基里斯走完乌龟超过他的距离后,乌龟在这段时间里也前进了一段距离,虽然愈来愈小。每次这样的思维,结果都是一样的,在这个过程中,逻辑并没有犯错。
我们可以把这样的思考无限循环下去,而且乌龟继续前进的距离永远不会是零,虽然趋向无穷小,那么可以用形式逻辑的方法,推出这样的结论:阿基里斯永远追不上乌龟。 以上的问题怎么解决呢? 或许可以用微积分的方法。
阿基里斯追不上乌龟的故事中,实际涉及到:对有限空间在有限时间内以无限速度作无限分割。这个分割实际就是无穷小,我们完全可以规定这个无穷小等于0,因此只要出现无穷小的现象或情况,我们就可以认为0要出现,事物的变化就有确定性。
或许我们和古人的区别在于,我们认为无穷小是0,而古人认为无穷小是永远不能等于0。古人他们太认真了,他们会想,无穷小仅仅是无穷小,怎么会是0呢,相反它永远也不会是0。
实际上无穷小是一个完整的概念,一旦把它有限化,那么它就不是零了。要找到0与非0之间的界限,实际上还是用有限的方式,去思维无限的对象,或者把有限的事物予以无限化。
飞矢不动 “飞矢不动”:飞着的箭在任何瞬间都是既非静止又非运动的。如果瞬间是不可分的,箭就不可能运动,因为如果它动了,瞬间就立即是可以分的了。
但是时间是由瞬间组成的,如果箭在任何瞬间都是不动的,则箭总是保持静止。所以飞出的箭不能处于运动状态。
芝诺问他的学生:“一支射出的箭是动的还是不动的?” “那还用说,当然是动的。” “确实是这样,在每个人的眼里它都是动的。
可是,这支箭在每一个瞬间里都有它的位置吗?” “有的,老师。” “在这一瞬间里,它占据的空间和它的体积一样吗?” “有确定的位置,又占据着和自身体积一样大小的空间。”
“那么,在这一瞬间里,这支箭是动的,还是不动的?” “不动的,老师” “这一瞬间是不动的,那么其他瞬间呢?” “也是不动的,老师” “所以,射出去的箭是不动的?” 游行队伍悖论 游行队伍悖论是古希腊数学家芝诺(Zeno of Elea)提出的一系列关于运动的不可分性的哲学悖论中的一个,属于芝诺悖论。这些悖论由于被记录在亚里士多德的《物理学》一书中而为后人所知。
芝诺提出这些悖论是为了支持他老师巴门尼德关于“存在”不动、是一的学说。这些悖论中最著名的两个是:“阿喀琉斯跑不过乌龟”和“飞矢不动”。
这些方法现在可以用微积分(无限)的概念解释。 首先假设在操场上,在一瞬间(一个最小时间单位)里,相对于观众席A,列队B、C将分别各向右和左移动一个距离单位。
□□□□□□□□ 观众席A ■■■■■■■■队列B……向右移动 ●●●●●●●● 队列C……向左移动 初始状态: □□□□□□□□ ■■■■■■■■ ●●●●●●●● B、C两个列队开始移动,如下图所示相对于观众席A,B和C分别向右和左各移动了一个距离单位。 □□□□□□□□ ■■■■■■■■ ●●●●●●●● 而此时,对B而言C移动了两个距离单位。
也就是,队列既可以在一瞬间(一个最小时间单位)里移动一个距离单位,也可以在半个最小时间单位里移动一个距离单位,这就产生了半个时间单位等于一个时间单位的矛盾。因此队列是移动不了的。
钱包悖论 谎言者悖论 集合论悖论 辛普森悖论 苏格拉底悖论 书目悖论 唐·吉诃德悖论。
【悖论引发的第三次数学危机】
1900年,国际数学家大会上,法国著名数学家庞加莱就曾兴高采烈地宣称:“………借助集合论概念,我们可以建造整个数学大厦……今天,我们可以说绝对的严格性已经达到了……” 可是,好景不长。 罗素构造了一个集合S:S由一切不是自身元素的集合所组成。然后罗素问:S是否属于S呢?根据排中律,一个元素或者属于某个集合,或者不属于某个集合。因此,对于一个给定的集合,问是否属于它自己是有意义的。但对这个看似合理的问题的回答却会陷入两难境地。如果S属于S,根据S的定义,S就不属于S;反之,如果S不属于S,同样根据定义,S就属于S。无论如何都是矛盾的。
我在说谎
你说呢
自相矛盾就是一个
城里所有不自己刮脸的男人都由我给他们刮脸,我也只给这些人刮脸
那么谁给这位理发师刮脸呢?
杀手的悖论
我是个杀手,这个秘密只能让我的雇主知道,否则官府会将我抓起来法办。在开始
我的杀手生涯之前,我意识到这是个地下工作,保密要求高,我不能当街叫卖、不能自
插草签;但我又得让我的潜在雇主知道我的存在,不然我接不到生意。
还有:
一位调查员受托去A、B、C三所中学调查学生订阅《中学生数学》的情况,他很快统计出,A校男生订阅的比例比女生订阅的比例要大些,对B校和C校的调查也得出同样的结果.于是他拟写了一个简要报道,称由抽取的三所学校的调查数据看,中学生中男生订阅《中学生数学》的比例比女生大.后来,他又把三所学校的学生合起来作了一遍统计复核,匪夷所思的事情发生了,这时他得出的统计结果令他大吃一惊,原来订阅《中学生数学》的所有学生中,女生的比例比男生要大些,怎么会是这样呢?这就象在玩一个魔术,少的变多了,多的变少了.你能帮他找找原因吗?
一位美国数学家来到一个赌场,随便叫住两个赌客,要教给他们一种既简单又挣钱的赌法.方法是,两个人把身上的钱都掏出来,数一数,谁的钱少就可以赢得钱多的人的全部钱.赌徒甲想,如果我身上的钱比对方多,我就会输掉这些钱,但是,如果对方的钱比我多,我就会赢得多于我带的钱数的钱,所以我赢的肯定要比输的多.而我俩带的钱谁多谁少是随机的,可能性是一半对一半,因此这种赌法对我有利,值得一试.赌徒乙的想法与甲不谋而合.于是两个人都愉快地接受了这位数学家的建议.看来这真是一种生财有道的赌博.
一位数学教授告诉学生,考试将在下周内某一天进行,具体在星期几呢?只有到了考试那天才知道,这是预先料不到的.学生们都有较强的逻辑推理能力,他们想,按教授的说法,不会是星期五考试,因为如果到了星期四还没有考试,那教授说的“只有到了考试那天才知道,这是预先料不到的”这句话就是错的.因此星期五考试可以排除.那就只可能在星期一到星期四考.既然这样,星期四也不可能考,因为到了星期三还没有考试的话,就只能是星期四了,这样的话,也不会是预料不到的.因此星期四考也被排除了.可以用同样的理由推出星期三、星期二、星期一都不可能考试.学生们推出结论后都很高兴,教授的话已经导出矛盾了,轻轻松松地过吧.结果到了下周的星期二,教授宣布考试,学生们都愣住了,怎么严格的推理失效了呢?教授确实兑现了自己说的话,谁也没有能预料到考试的时间.现在请你想一想,学生们的推理究竟错在哪里呢?
一只蚂蚁沿着一条长100米的橡皮绳以每秒1厘米的匀速由一端向另一端爬行.每过1秒钟,橡皮绳就拉长 100米,比如 10秒后,橡皮绳就伸长为1000米了.当然,这个问题是纯数学化的,既假定橡皮绳可任意拉长,并且拉伸是均匀的.蚂蚁也会不知疲倦地一直往前爬,在绳子均匀拉长时,蚂蚁的位置理所当然地相应均匀向前挪动.现在要问,如此下去,蚂蚁能否最终爬到橡皮绳的另一端?
两分法悖论“在你穿过一段距离之前,必先穿过这个距离的一半。”
意思是说向着一个目的地运动的物体,首先必须经过路程的中点;然而要经过这点,又必须先经过路程的四分之一点;要过四分之一点又必须首先通过八分之一点等等,如此类推,以至无穷。由此得出的结论就是:运动是不可穷尽的过程,运动永远不可能有开始。
阿基里斯追龟 “阿基里斯追不上乌龟”是古希腊的一个哲学故事。阿基里斯是当时的一个善于长跑的人。
阿基里斯当然能够追上乌龟,用方程可以来解决。假设阿基里斯的速度为a,乌龟的速度为b,阿基里斯开始追赶乌龟的时候,乌龟在阿基里斯的前面,假设这段距离为c,请问需要多少时间阿基里斯可以追上乌龟。
设所需要的时间为x,那么ax=bx+c, x=c/(a-b).由于a b c都是常数,x当然可以求得一个解。当然如果a b 的差如果很小,那么解可以趋于无穷大。
但是在这个哲学故事里面和这个问题却毫无关系,在这个故事里面说阿基里斯追不上乌龟是说,不论阿基里斯比乌龟跑得有多快,他都追不上。 但是当我们引入无限分割的问题时,马上出现了变化。
如果我们故意这样思考:阿基里斯在追赶乌龟的过程中,或者追上乌龟之前,必须先走完乌龟当前已经超过他的距离。(这不是假设,而是确实应该的事情。
但是这种思维方式却是假定的,你可以用这样的思维方式,也可以不用。一旦用了这样的思维方式,就会使思维过程没有完结,从而使得阿基里斯追不上乌龟。)
按照这种思维方式,当阿基里斯走完乌龟超过他的距离后,乌龟在这段时间里也前进了一段距离,虽然愈来愈小。每次这样的思维,结果都是一样的,在这个过程中,逻辑并没有犯错。
我们可以把这样的思考无限循环下去,而且乌龟继续前进的距离永远不会是零,虽然趋向无穷小,那么可以用形式逻辑的方法,推出这样的结论:阿基里斯永远追不上乌龟。 以上的问题怎么解决呢? 或许可以用微积分的方法。
阿基里斯追不上乌龟的故事中,实际涉及到:对有限空间在有限时间内以无限速度作无限分割。这个分割实际就是无穷小,我们完全可以规定这个无穷小等于0,因此只要出现无穷小的现象或情况,我们就可以认为0要出现,事物的变化就有确定性。
或许我们和古人的区别在于,我们认为无穷小是0,而古人认为无穷小是永远不能等于0。古人他们太认真了,他们会想,无穷小仅仅是无穷小,怎么会是0呢,相反它永远也不会是0。
实际上无穷小是一个完整的概念,一旦把它有限化,那么它就不是零了。要找到0与非0之间的界限,实际上还是用有限的方式,去思维无限的对象,或者把有限的事物予以无限化。
飞矢不动“飞矢不动”:飞着的箭在任何瞬间都是既非静止又非运动的。如果瞬间是不可分的,箭就不可能运动,因为如果它动了,瞬间就立即是可以分的了。
但是时间是由瞬间组成的,如果箭在任何瞬间都是不动的,则箭总是保持静止。所以飞出的箭不能处于运动状态。
芝诺问他的学生:“一支射出的箭是动的还是不动的?” “那还用说,当然是动的。” “确实是这样,在每个人的眼里它都是动的。
可是,这支箭在每一个瞬间里都有它的位置吗?” “有的,老师。” “在这一瞬间里,它占据的空间和它的体积一样吗?” “有确定的位置,又占据着和自身体积一样大小的空间。”
“那么,在这一瞬间里,这支箭是动的,还是不动的?” “不动的,老师” “这一瞬间是不动的,那么其他瞬间呢?” “也是不动的,老师” “所以,射出去的箭是不动的?”游行队伍悖论游行队伍悖论是古希腊数学家芝诺(Zeno of Elea)提出的一系列关于运动的不可分性的哲学悖论中的一个,属于芝诺悖论。这些悖论由于被记录在亚里士多德的《物理学》一书中而为后人所知。
芝诺提出这些悖论是为了支持他老师巴门尼德关于“存在”不动、是一的学说。这些悖论中最著名的两个是:“阿喀琉斯跑不过乌龟”和“飞矢不动”。
这些方法现在可以用微积分(无限)的概念解释。 首先假设在操场上,在一瞬间(一个最小时间单位)里,相对于观众席A,列队B、C将分别各向右和左移动一个距离单位。
□□□□□□□□ 观众席A ■■■■■■■■队列B……向右移动 ●●●●●●●● 队列C……向左移动 初始状态: □□□□□□□□ ■■■■■■■■ ●●●●●●●● B、C两个列队开始移动,如下图所示相对于观众席A,B和C分别向右和左各移动了一个距离单位。 □□□□□□□□ ■■■■■■■■ ●●●●●●●● 而此时,对B而言C移动了两个距离单位。
也就是,队列既可以在一瞬间(一个最小时间单位)里移动一个距离单位,也可以在半个最小时间单位里移动一个距离单位,这就产生了半个时间单位等于一个时间单位的矛盾。因此队列是移动不了的。
钱包悖论谎言者悖论集合论悖论辛普森悖论苏格拉底悖论书目悖论唐·吉诃德悖论。
1.克里特人伊壁孟德 伊:所有的克里特人都是撒谎者。
M:他说的是真的吗?如果他说的是实话,那么克里特人都是撒谎者,而伊壁孟德是克里特人, 他必然说了假话。他撒谎了吗?如果他确实撒了谎,那么克里特人就都不是说谎的人,因而伊壁孟德也必然说了真话。
他怎么会既撒谎,同时又说真话呢? 伊壁孟德是个半传奇式的希腊人,他在公元前6世纪住在希腊。有一个神话说他曾经一下子睡了57年。
关于他的上面那段文字,如果我们假定撒谎者总是说假话,不撒谎的人总是说真话,那么就会出现逻辑的矛盾。按此假定,“所有的克里特人都是撒谎者”这句话不可能是真话,因为这说明伊壁孟德既是撒谎的人,因此他说的就不是真话。
可是这又意味着克里特人是说真话的,那么伊壁孟德说的话也必定是真话,因此上面引的那句话也不可能是假话。 古希腊人曾为此大伤脑筋,怎么会一句话看上去完美无缺,自身没有矛盾,却既是真话又是假话呢!一个斯多噶派哲学家,克利西帕斯写了六篇关于“说谎者悖论”的论文,没有一篇成功。
有一位希腊诗人叫菲勒特斯,他的身体十分瘦弱,据说他的鞋中常带着铅以免他被大风吹跑,他常常担心自己会因思索这些悖论而过早地丧命。在《新约》中,圣·保罗在他给占塔斯的书信中也引述过这段悖论(1:12 – 13)。
2.说谎者悖论 M:我们陷入了著名的说谎者悖论之中。 下面是它的最简单的形式。
甲:这句话是错的。 M:上面这个句子对吗?如果是对的,这句话就是错的!如果这句话是错的,那这个句子就对了!像这样矛盾的说法比你所能想到的还要普遍得多。
学生们是否能够解释,为什么这类悖论采用上述形式表达(即一句话谈的正是它本身)就变得清晰起来?这是因为它消除了说谎者是否总是说谎,不说谎者总是说真话。 3。
无穷的倒退 M:机器受到的难题就像人碰到要解答一个古老的谜?。 问题:鸡和鸡蛋,到底先有哪个? M:先有鸡吗?不,它必须从鸡蛋里孵出来,那末先有鸡蛋?不,它必须由鸡生下。
好!你陷入了无穷的倒退之中。 鸡和鸡蛋这个古老的问题是逻辑学家称为“无穷倒退”的最普通的例子。
老人牌麦片往往装在一个盒中,上面的画是一个老人举着一盒麦片,这个盒上也有一张画有一个老人举着一盒麦片的小画片。自然,那个小盒上又有同样的画片,如此以往就像一个套一个的中国盒子的无穷连环套一样。
《科学美国人》1965年4月号有一个封面,画着—个人眼中反映着这本杂志。 你可以看到在反映出的杂志上,也有一个小一点的眼睛,反映出一本更小的杂志,自然这样一直小下去。
在理发店里,对面的墙上有很多相向的镜子,人们在这些镜子中可以看到反照出的无穷倒退。 4。
理发师悖论 M:著名的理发师悖论是伯特纳德·罗素提出的。 一个理发师的招牌上写着: 告示:城里所有不自己刮脸的男人都由我给他们刮脸,我也只给这些人刮脸。
M:谁给这位理发师刮脸呢? M:如果他自己刮脸,那他就属于自己刮脸的那类人。但是,他的招牌说明他不给这类人刮脸,因此他不能自己来刮。
M:如果另外一个人来给他刮脸,那他就是不自己刮脸的人。但是,他的招牌说他要给所有这类人刮脸。
因此其他任何人也不能给他刮脸。看来,没有任何人能给这位理发师刮脸了! 伯特纳德·罗素提出这个悖论,为的是把他发现的关于集合的一个著名悖论用故事通俗地表述出来。
某些集合看起来是它自己的元素。例如,所有不是苹果的东西的集合、它本身就不是苹果,所以它必然是此集合自身的元素。
现在来考虑一个由一切不是它本身的元案的集合组成的集合。这个集合是它本身的元素吗?无论你作何回答,你都自相矛盾[*]。
在逻辑学历史上最富戏剧性的危机之一就与这条逆论有关。 德国的著名逻辑学家哥特洛伯·弗里兹写完了他最重要的著作《算法基础》第二卷,他认为他在这本书中确立了一套严密的集合论,它可作为整个数学的基础。
1902年,当该书付印时,他收到了罗索的信,他得知上面那条悖论。弗里兹的集合论容许由一切不是它自身的元素的集合构成的集合。
正如罗素在信中澄清的,这个表面上结构完美的集合却是自相矛盾的。弗里兹在收到罗素的信后,只来得及插入一个简短的附言: “一个科学家所遇到的最不合心意的事,莫过于是在他的工作即将结束时使其基础崩溃了,我把罗素的来信发表如下……” 据说,弗里兹使用的词“不合心意”(undesirable)是数学史上最词不达意的说法了 5。
2.四只猫的性别 M:很容易作出错误的概率计算。这儿有两只猫已住在一起。
V1:亲爱的,我们的新房舍中有几只猫? V2:你不会数呀?四只,你这个笨蛋。 V1:几只雄猫? V2:很难说,我也不知道呢。
V1:四只猫都是雄的不太可能。 V2:也不可能四只都是雌猫。
V1:也许只有一只是雄猫。 V2:或许只有一只是雌猫。
V1:这也不是很难想出来的,亲爱的。每只猫是雄是雌的机会是一半对一半,所以很明显,最有可能的结果是两个雄的,两个雌的。
你还不能把它们算出来吗? M:猫先生的理由对不对? 让我们来检验它的理论。用B表示雄猫,用G表示雌猫,这就很容易列出十六种同等可能的情。
如果他在说谎,那么“我在说谎”就是一个谎,因此他说的是实话;但是如果这是实话,他又在说谎。
矛盾不可避免。如果事件A发生,则推导出非A,非A发生则推导出A,这是一个自相矛盾的无限逻辑循环。
在萨维尔村,理发师挂出一块招牌:“我只给村里所有那些不给自己理发的人理发。”有人问他:“你给不给自己理发?”理发师顿时无言以对。
这是一个矛盾推理:如果理发师不给自己理发,他就属于招牌上的那一类人。有言在先,他应该给自己理发。
反之,如果这个理发师给他自己理发,根据招牌所言,他只给村中不给自己理发的人理发,他不能给自己理发。 “R是所有不包含自身的集合的集合。”
人们同样会问:“R包含不包含R自身?”如果不包含,由R的定义,R应属于R。如果R包含自身的话,R又不属于R。
一个图书馆编纂了一本书名词典,它列出这个图书馆里所有不列出自己书名的书。那么它列不列出自己的书名? “世界上没有绝对的真理” 我们不知道这句话本身是不是“绝对的真理”。
在芝诺看来,由于飞箭在其飞行的每个瞬间都有一个瞬时的位置,它在这个位置上和不动没有什么区别。那么,无限个静止位置的总和就等于运动了吗?或者无限重复的静止就是运动?中国古代也有类似的说法有学生问他的希腊老师:“什么是诡辩?”老师反问到:“有甲乙两人,甲很干净,乙很脏。
如果请他们洗澡,他们中间谁会洗?” 这里有四种可能,一是甲洗,因为他有爱干净的习惯;二是乙洗,因为他需要;三是两人都洗,一个是因为习惯,另一个是因为需要;四是两人都没洗,因为脏人没有洗澡的习惯,干净人不需要洗。这四种可能彼此相悖,无论学生作出怎样的回答,老师都可以予以反驳,因为他不需要有一个客观的标准,这就是诡辩。
这是一个可以自圆其说的乩语。它也有四种解释:一是“父在,母先亡”;二是“父在母之先亡”;三是如果父母健在,可以解释为将来;四是即使父母都去世了,也可以解释为“父亲在的时候,母亲就去世了。”
或者是“父亲在母亲以前就去世了。”真是左右逢源。
这个命题与“白马非马”何其相似,尽管论证的方法和目的不同。荀子把墨辩“杀盗非杀人也”归入“惑于用名以乱名”的诡辩。
荀子认为,在外延方面“人”的范畴包含了“盗”的范畴。所以,说“盗”的时候,就意味着说他同时也是“人”;杀“盗”也是杀人。
故事1、有人要哲学家罗素证明从“2+2=5”推出“罗素是教皇”。
聪明的罗素做出了以下的证明: 1) 假定2+2=5; 2) 等式两边各减去2,得出2=3; 3) 易位得3=2 4) 两边各减去1,得出2=1; 5) 教皇与罗素是两个人,但既然2=1,教皇与罗素就是一个人,所以罗素是教皇。 ——罗素是教皇的前提是2+2=5,这是一个假设,我们往往认为假设是暂时可以成立的(猜想的含义基本等于假设),许多数学中的猜想最后都得到了验证。
但是猜想,也就是说假设在没有验证之前它是不成立的,因此在2+2=5没有得到证明之前,罗素不是教皇,即使2+2=5的假设被证明是成立的,罗素也不是教皇,因为按照“认字的人”先生文中“语言逻辑思维和事实是两回事”的观点,2+2=5和罗素=教皇是两回事,这很容易理解,所以诡辩是建立在一个错误的假设的基础上的。 故事2、古希腊哲学家普罗太哥拉精通法律和诡辩术,他有个穷学生交不起学费,普罗太哥拉就答应他先免费上学,等他毕业后打赢第一场官司再付钱。
结果这个学生毕业后一直不去打官司,也就总不给普罗太哥拉交钱,普罗太哥拉上法院告了这个学生。可是,这个学生深得真传,诡辩功力和老师不相上下。
学生在法庭上说:如果我输掉这场官司,那么我就还没打赢过官司,也就用不着向老师交钱;如果我赢了这场官司,也就是说,法庭驳回老师的要求,那么我还是不用交钱。总之,无论输赢,我都不用交钱。
对此,老师反驳说:如果学生输掉这场官司,既然输了就说明我的要求是正当的,那么他就必须交钱;如果他打赢了这场官司,他就赢过了第一场官司,那么他还是必须交钱。 总之,无论输赢,他都必须交钱。
——在这场诉讼中似乎没有任何一个法官能够做出令诉讼双方都信服的判决,但是只要解决了受教育的目的,以及教育是义务的行为,还是应该得到报酬这样一个契约关系,判决就不难做出,而支付报酬的相关条件必须符合大的契约关系,所以普罗太哥拉应该胜诉。 故事3、飞箭从甲点飞到乙点,其间必然经过无数个位置,有限的时间内决不可能通过无穷多的位点。
补充:如果飞箭能够通过,它就必须需要使用无穷的时间,而在无穷的时间我们无法证明它是否通过了 ——这个悖论很有意思,它存在前提是在暗示时间与空间是一个共同体,没有任何的差别,但是我们知道时间和空间虽然是共存的,但却不是一个“物体”的两种形式,时间的单位不能等同于空间的单位,时间之所以存在,完全是因为“任何两个时间点之间都存在一个时间段,而这个时间段上速度的积分就是两个时间点之间飞箭运动的位移。 ”(摘自[匿名] 塞克斯)因此这个悖论是不成立的。
故事4、在任何一个特定时点(也就是位点),飞箭都是固定不动的,无限个静止的集合,不可能组成运动。 补充:所以飞箭一直是静止的。
——这个悖论不成立的原因同上。 故事5、在萨维尔村,理发师挂出一块招牌:“我只给村里所有那些不给自己理发的人理发。
”有人问他:“你给不给自己理发?”理发师顿时无言以对。 ——理发师的问题在于“不给自己理发”,不给自己理发同允许别人给自己理发是两个概念。
如果我没有理解错的话,“给自己理发”应该意味着是自己动手理自己的发,至少具有这样的含义。所以理发师可以给所有的不是自己动手理发的人理发,也可以允许别人给自己理发。
故事6、“所有克利特人都说谎 ,他们中间的一个诗人这么说。” ——这个悖论的第一个要点在于诗人也是克利特人之一,第二个要点是悖论的成立被限制在一个固定的时间和空间之内,诗人说这句话时可能没有撒谎,但是不能排除在其他的时间段里没有撒谎。
还有一个很著名的悖论:有人问上帝,你能不能造一个连自己也举不动的石头,如果能,那么就证明你是万能的,但是你制造出这样一个石头自己却举不动,你也不是万能的。 ——这个悖论是建立在上帝是具体存在的这个假设的基础之上的,而事实上,上帝是人们的一种信仰,他并不是一个真实、客观的存在。
我们都知道,信仰可以促使人们去对客观环境产生作用,但是自己却什么也做不了,它必须通过一个“代理人”才能实现其价值。让上帝这个并不具体存在的“概念”来制造一件东西显然是荒谬的。
关于时间悖论的故事 一九四五年的一天,克力富兰的孤儿院里出现了一个神秘的女婴,没有人知道她的父母是谁。 她孤独地长大,没有任何人与她来往。
直到一九六三年的一天,她莫明其妙地爱上了一个流浪汉,情况才变得好起来。可是好景不长,不幸事件一个接一个的发生。
首先,当她发现自己怀上了流浪汉的小孩时,流浪汉却突然失踪了。其次,她在医院生小孩时,医生发现她是双性人,也就是说她同时具有男女性器官。
为了挽救她的生命,医院给她做了变性手术,她变成了他 。最不幸的是,她刚刚生下的小女孩又被一个神秘的人给绑走了。
这一连串的打击使他从此一蹶不振,最后流落到街头变成了一个无家可归的流浪汉。 直到一九七零年的一天,他醉熏熏地走进了一个名叫[url] 的小酒吧,把他一身不幸的遭遇告诉了一个比他年长的酒吧伙计。
酒吧伙计很同情他,主动提出帮他找到那。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:0.129秒