多元线性回归分析模型中估计系数的方法是:多元线性回归分析预测法多元线性回归分析预测法:是指通过对两个或两个以上的自变量与一个因变量的相关分析,建立预测模型进行预测的方法。
当自变量与因变量之间存在线性关系时,称为多元线性回归分析。多元线性回归预测模型一般公式为:多元线性回归模型中最简单的是只有两个自变量(n=2)的二元线性回归模型,其一般形式为:下面以二元线性回归分析预测法为例,说明多元线性回归分析预测法的应用。
二元线性回归分析预测法,是根据两个自变量与一个因变量相关关系进行预测的方法。二元线性回归方程的公式为:式中::因变量;x1,x2:两个不同自变量,即与因变量有紧密联系的影响因素。
a,b1,b2:是线性回归方程的参数。a,b1,b2是通过解下列的方程组来得到。
二元线性回归预测法基本原理和步骤同一元线性回归预测法没有原则的区别,大体相同。“多元线性回归分析预测法”百度百科链接:/view/1338395.htm。
在做回归预测时需要分析的数据往往是多变量的,那么我们在做多元回归时就需要特别注意了解我们的数据是否能够满足做多元线性回归分析的前提条件。
应用多重线性回归进行统计分析时要求满足哪些条件呢?
总结起来可用四个词来描述:线性、独立、正态、齐性。
(1)自变量与因变量之间存在线性关系
这可以通过绘制”散点图矩阵”进行考察因变量随各自变量值的变化情况。如果因变量Yi 与某个自变量X i 之间呈现出曲线趋势,可尝试通过变量变换予以修正,常用的变量变换方法有对数变换、倒数变换、平方根变换、平方根反正弦变换等。
(2)各观测间相互独立
任意两个观测残差的协方差为0 ,也就是要求自变量间不存在多重共线性问题。对于如何处理多重共线性问题,请参考《多元线性回归模型中多重共线性问题处理方法》
(3)残差e 服从正态分布N(0,σ2) 。其方差σ2 = var (ei) 反映了回归模型的精度, σ 越小,用所得到回归模型预测y的精确度愈高。
(4) e 的大小不随所有变量取值水平的改变而改变,即方差齐性。
多元线性回归模型,(multivariable linear regression model )在实际经济问题中,一个变量往往受到多个变量的影响。例如,家庭消费支出,除了受家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种因素的影响。
多元线性回归模型的一般形式为
Yi=β0+β1X1i+β2X2i+…+βkXki+μi i=1,2,…,n
其中 k为解释变量的数目,βj(j=1,2,…,k)称为回归系数(regression coefficient)。上式也被称为总体回归函数的随机表达式。它的非随机表达式为
E(Y∣X1i,X2i,…Xki,)=β0+β1X1i+β2X2i+…+βkXki
βj也被称为偏回归系数(partial regression coefficient)
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.961秒