我最近专攻了几天数学,发现几点心得;难题主要是直线与圆锥曲线相交的问题。
如果有三角形面积,就用 xy,(x+y)平方,(x-y)平方代换。若果是有两个交点,一般要用直线方程中的x表示y,再带到双曲线方程中去,这样直线斜率k就在分子上。
不过也有特殊情况,就是k在分母上,此时用y表示x。选准这一点后面就好做了。
再者就是要记住它的第1,2定义。求轨迹时一般要设所求点坐标为(x,y)。
然后用k,x表示y,再找出关于x,y的关系式,二者结合即可。至于基础的东西,最好找个细心女生的笔记看看,其实东西很少,几分钟就能看完。
一切ok了。祝你考试顺利。
圆锥曲线在高中数学当中属于提个重难点问题。选择填空题当中的圆锥曲线,一半考察的是概念问题,和一些简单最值、中点,数型结合问题,解题过程比较简单。当然,在大题中,问题的设置基本比较复杂,不过都是由简单到复杂的设置。所以前面解答起来并不费事。主要事后面的题型考察综合能力比较强,一般在规定的时间内可能没有多余的时间耐心解答。所以会造成空题后者只解答出一般的现象。
从圆锥曲线现在学习现状来说,学生的被动学习现象比较多,题型多变,大多数学生没有耐心钻研,为了应付考试而学习,大部分的学生缺乏主动性,只知道一味的做题做题,并不会总结,那么同学们遇到同样的问题还是不会举一反三,不会随机应变。而且每个学生基础各不相同。那么对老师传授的知识的接受程度都会不同,那么在学习中一味随大流,没有想法,还是不能中沃圆锥曲线的知识。
圆锥曲线包括椭圆,双曲线,抛物线。
其统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e1时为双曲线。
一、圆锥曲线的方程和性质: 1)椭圆 文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个小于1的正常数e。定点是椭圆的焦点,定直线是椭圆的准线,常数e是椭圆的离心率。
标准方程: 1.中心在原点,焦点在x轴上的椭圆标准方程:(x^2/a^2)+(y^2/b^2)=1 其中a>b>0,c>0,c^2=a^2-b^2. 2.中心在原点,焦点在y轴上的椭圆标准方程:(x^2/b^2)+(y^2/a^2)=1 其中a>b>0,c>0,c^2=a^2-b^2. 参数方程: X=acosθ Y=bsinθ (θ为参数 ,设横坐标为acosθ,是由于圆锥曲线的考虑,椭圆伸缩变换后可为圆 此时c=0,圆的acosθ=r) 2)双曲线 文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数e。定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。
标准方程: 1.中心在原点,焦点在x轴上的双曲线标准方程:(x^2/a^2)-(y^2/b^2)=1 其中a>0,b>0,c^2=a^2+b^2. 2.中心在原点,焦点在y轴上的双曲线标准方程:(y^2/a^2)-(x^2/b^2)=1. 其中a>0,b>0,c^2=a^2+b^2. 参数方程: x=asecθ y=btanθ (θ为参数 ) 3)抛物线 标准方程: 1.顶点在原点,焦点在x轴上开口向右的抛物线标准方程:y^2=2px 其中 p>0 2.顶点在原点,焦点在x轴上开口向左的抛物线标准方程:y^2=-2px 其中 p>0 3.顶点在原点,焦点在y轴上开口向上的抛物线标准方程:x^2=2py 其中 p>0 4.顶点在原点,焦点在y轴上开口向下的抛物线标准方程:x^2=-2py 其中 p>0 参数方程 x=2pt^2 y=2pt (t为参数) t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0 直角坐标 y=ax^2+bx+c (开口方向为y轴, a0 ) x=ay^2+by+c (开口方向为x轴, a0 ) 圆锥曲线(二次非圆曲线)的统一极坐标方程为 ρ=ep/(1-e*cosθ) 其中e表示离心率,p为焦点到准线的距离。 二、焦半径 圆锥曲线上任意一点到焦点的距离称为焦半径。
圆锥曲线左右焦点为F1、F2,其上任意一点为P(x,y),则焦半径为: 椭圆 |PF1|=a+ex |PF2|=a-ex 双曲线 P在左支,|PF1|=-a-ex |PF2|=a-ex P在右支,|PF1|=a+ex |PF2|=-a+ex P在下支,|PF1|= -a-ey |PF2|=a-ey P在上支,|PF1|= a+ey |PF2|=-a+ey 抛物线 |PF|=x+p/2 三、圆锥曲线的切线方程 圆锥曲线上一点P(x0,y0)的切线方程 以x0x代替x^2,以y0y代替y^2;以(x0+x)/2代替x,以(y0+y)/2代替y 即椭圆:x0x/a^2+y0y/b^2=1; 双曲线:x0x/a^2-y0y/b^2=1; 抛物线:y0y=p(x0+x) 四、焦准距 圆锥曲线的焦点到准线的距离p叫圆锥曲线的焦准距,或焦参数。 椭圆的焦准距:p=(b^2)/c 双曲线的焦准距:p=(b^2)/c 抛物线的准焦距:p 五、通径 圆锥曲线中,过焦点并垂直于轴的弦成为通径。
椭圆的通径:(2b^2)/a 双曲线的通径:(2b^2)/a 抛物线的通径:2p 六、圆锥曲线的性质对比 见下图: 七、圆锥曲线的中点弦问题 已知圆锥曲线内一点为圆锥曲线的一弦中点,求该弦的方程 ⒈联立方程法。 用点斜式设出该弦的方程(斜率不存在的情况需要另外考虑),与圆锥曲线方程联立求得关于x的一元二次方程和关于y的一元二次方程,由韦达定理得到两根之和的表达式,在由中点坐标公式的两根之和的具体数值,求出该弦的方程。
2.点差法,或称代点相减法。 设出弦的两端点坐标(x1,y1)和(x2,y2),代入圆锥曲线的方程,将得到的两个方程相减,运用平方差公式得[(x1+x2)·(x1-x2)]/(a^2)+[(y1+y2)·(y1-y2)/(b^2]=0 由斜率为(y1-y2)/(x1-x2)可以得到斜率的取值。
(使用时注意判别式的问题)。
椭圆 一、知识表格 项目 内容 第一定义 平面内与两个定点的距离之和等于常数(大于)的点的轨迹叫椭圆。
第二定义 平面内到定点与到定直线的距离之比为常数的点的轨迹叫椭圆。 图形 标准方程 几 何 性 质 范围 顶点与长短轴的长 焦点焦距 准线方程 焦半径 左 下 焦准距 离心率 (越小,椭圆越近似于圆) 准线间距 对称性 椭圆都是关于轴成轴对称,关于原点成中心对称 通径 焦点三角形 椭圆上一点与椭圆的两个焦点组成的三角形,其周长为,解题中常用余弦定理和勾股定理来进行相关的计算 焦点弦三角形 椭圆的一焦点与过另一焦点的弦组成的三角形,其周长为。
参数方程 为参数) 为参数) 注意: 1、椭圆按向量平移后的方程为:或,平移不改变点与点之间的相对位置关系(即椭圆的焦准距等距离不变)和离心率。 2、弦长公式: 已知直线:与曲线交于两点,则 或 3、中点弦问题的方法:①方程组法,②代点作差法。
两种方法总体都体现高而不求的数学思想。 双曲线 项目 内容 第一定义 平面内与两个定点的距离之差等于常数(小于)的点的轨迹叫双曲线。
第二定义 平面内到定点与到定直线的距离之比为常数的点的轨迹叫双曲线。 图形 标准方程 几 何 性 质 范围 顶点与实虚轴的长 焦点焦距 准线方程 焦半径 当在右支上时 左 当在左支上时 左 当在上支上时 下 当在下支上时 下 渐近线方程 焦准距 离心率 (越小,双曲线开口越小),等轴双曲线的 准线间距 对称性 双曲线都是关于轴成轴对称,关于原点成中心对称 通径 焦点三角形 双曲线上一点与双曲线的两个焦点组成的三角形,解题中常用余弦定理和勾股定理来进行相关的计算 焦点弦三角形 双曲线的一焦点与过另一焦点的弦组成的三角形。
参数方程 为参数) 为参数) 项目 内容 定义 平面内到定点的距离等于到定直线距离的点的轨迹叫抛物线。 图形 标准方程 几 何 性 质 范围 开口方向 向右 向左 向上 向下 焦准距 顶点坐标 坐标原点(0,0) 焦点坐标 准线方程 对称轴 轴 轴 轴 轴 离心率 通径长 焦半径 抛物线 一、焦点弦的结论:(针对抛物线:其中),为过焦点的弦,则 1、焦点弦长公式: 2、通径是焦点弦中最短的弦其长为 3、,, 4、以焦点弦为直径的圆与抛物线的准线相切 5、已知、在准线上的射影分别为、,则三点、、共线,同时 、、三点也共线 6、已知、在准线上的射影分别为、,则 7、 二、顶点直角三角形:直角顶点在抛物线顶点的三角形与其对称轴交于一个定点 ,反之,过定点的弦所对的顶点角为直角。
三、从抛物线的焦点出发的光线经抛物线反射后与抛物线的对称轴平行。 椭圆基础练习题 椭圆(一) 1.椭圆上一点P到一个焦点的距离为5,则P到另一个焦点的距离为( ) A.5 B.6 C.4 D.10 2.椭圆的焦点坐标是( ) A.(±5,0) B.(0,±5) C.(0,±12) D.(±12,0) 3.已知椭圆的方程为,焦点在x轴上,则其焦距为( ) A.2 B.2 C.2 D. 4.,焦点在y轴上的椭圆的标准方程是 .5.方程表示椭圆,则α的取值范围是( ) A. B. C.∈Z) D. ∈Z) 椭圆(二) 1.设F1、F2为定点,|F1F2|=6,动点M满足|MF1|+|MF2|=6,则动点M的轨迹是 ( ) A.椭圆 B.直线 C.圆 D.线段 2.椭圆的左右焦点为F1、F2,一直线过F1交椭圆于A、B两点,则△ABF2的周长为 ( ) A.32 B.16 C.8 D.4 3.设α∈(0,),方程表示焦点在x轴上的椭圆,则α∈ () A.(0, B.(,) C.(0,) D.〔,) 4.如果方程x2+ky2=2表示焦点在y轴上的椭圆,则k的取值范围是______. 5.方程表示焦点在y轴上的椭圆,则m的取值范围是______. 6.在△ABC中,BC=24,AC、AB的两条中线之和为39,求△ABC的重心轨迹方程. 椭圆(三) 1.选择题 (1)已知椭圆上一点P到椭圆的一个焦点的距离为3,则P到另一个焦点的距离是 ( )A.2 B.3 C.5 D.7 (2)已知椭圆方程为,那么它的焦距是 ( ) A.6 B.3 C.3 D. (3)如果方程x2+ky2=2表示焦点在y轴上的椭圆,那么实数k的取值范围是 ( ) A.(0,+∞) B.(0,2) C.(1,+∞) D.(0,1) (4)已知椭圆的两个焦点坐标是F1(-2,0),F2(2,0),并且经过点P(),则椭圆标准方程是______. (5)过点A(-1,-2)且与椭圆的两个焦点相同的椭圆标准方程是______. (6)过点P(,-2),Q(-2,1)两点的椭圆标准方程是______. 椭圆(四) 1.设0≤α A.(, ) B.(, ) C.(,) D.(,π) 2.方程(a>b>0,k>0且k≠1),与方程(a>b>0)表示的椭圆 ( ) A.有等长的短轴、长轴 B.有共同的焦点 C.有公共的准线 D.有相同的离心率 3.中心在原点,焦点在x轴上,焦距等于6,离心率等于,则此椭圆的方程是( ) A. B. C. D. 4.若方程表示焦点在y轴上的椭圆,则实数m的取值范围是( ) A.-16。
定义:
1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。 2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。即{P
PF1|-|PF2||=2a, (2a<|F1F2|)}。 3. 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。
4. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。
方程:
1)直线 参数方程:x=X+tcosθ y=Y+tsinθ (t为参数)直角坐标:y=ax+b 2)圆参数方程:x=X+rcosθ y=Y+rsinθ (θ为参数 )直角坐标:x^2+y^2=r^2 (r 为半径)3)椭圆参数方程:x=X+acosθ y=Y+bsinθ (θ为参数 )直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 14)双曲线参数方程:x=X+asecθ y=Y+btanθ (θ为参数 )直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴)5)抛物线参数方程:x=2pt^2 y=2pt (t为参数)直角坐标:y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )
已经算比较全面的总结了
圆锥曲线包括椭圆,双曲线,抛物线 1. 椭圆:到两个定点的距离之和等于定长(定长大于两个定点间的距离)的动点的轨迹叫做椭圆。
即:{P| |PF1|+|PF2|=2a, (2a>|F1F2|)}。 2. 双曲线:到两个定点的距离的差的绝对值为定值(定值小于两个定点的距离)的动点轨迹叫做双曲线。
即{P。
PF1|-|PF2||=2a, (2a<|F1F2|)}。
3. 抛物线:到一个定点和一条定直线的距离相等的动点轨迹叫做抛物线。 4. 圆锥曲线的统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。
当0<e1时为双曲线。 ·圆锥曲线由来:圆,椭圆,双曲线,抛物线同属于圆锥曲线。
早在两千多年前,古希腊数学家对它们已经很熟悉了。古希腊数学家阿波罗尼采用平面切割圆锥的方法来研究这几种曲线。
用垂直与锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线。阿波罗尼曾把椭圆叫“亏曲线”,把双曲线叫做“超曲线”,把抛物线叫做“齐曲线”。
·圆锥曲线的参数方程和直角坐标方程: 1)直线 参数方程:x=X+tcosθ y=Y+tsinθ (t为参数) 直角坐标:y=ax+b 2)圆 参数方程:x=X+rcosθ y=Y+rsinθ (θ为参数 ) 直角坐标:x^2+y^2=r^2 (r 为半径) 3)椭圆 参数方程:x=X+acosθ y=Y+bsinθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 + y^2/b^2 = 1 4)双曲线 参数方程:x=X+asecθ y=Y+btanθ (θ为参数 ) 直角坐标(中心为原点):x^2/a^2 - y^2/b^2 = 1 (开口方向为x轴) y^2/a^2 - x^2/b^2 = 1 (开口方向为y轴) 5)抛物线 参数方程:x=2pt^2 y=2pt (t为参数) 直角坐标:y=ax^2+bx+c (开口方向为y轴, a0 ) x=ay^2+by+c (开口方向为x轴, a0 ) 圆锥曲线(二次非圆曲线)的统一极坐标方程为 ρ=ep/(1-e*cosθ) 其中e表示离心率,p为焦点到准线的距离。 焦点到最近的准线的距离等于ex±a 。
圆锥曲线的焦半径(焦点在x轴上,F1 F2为左右焦点,P(x,y),长半轴长为a) 椭圆:椭圆上任一点和焦点的连线段的长称为焦半径。 |PF1|=a+ex |PF2|=a-ex 双曲线: P在左支,|PF1|=-a-ex |PF2|=a-ex P在右支,|PF1|=a+ex |PF2|=-a+ex P在下支,|PF1|= -a-ey |PF2|=a-ey P在上支,|PF1|= a+ey |PF2|=-a+ey 正态分布 normal distribution 一种概率分布。
正态分布是具有两个参数μ和σ2的连续 型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N(μ,σ2 )。 服从正态分布的随机变量的概率规律为取 μ邻近的值的概率大 ,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。
正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。它的形状是中间高两边低 ,图像是一条位于x轴上方的钟形曲线。
当μ=0,σ2 =1时,称为标准正态分布,记为N(0,1)。μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。
多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。 正态分布最早由A.棣莫弗在求二项分布的渐近公式中得到。
C.F.高斯在研究测量误差时从另一个角度导出了它。P.S.拉普拉斯和高斯研究了它的性质。
生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述。例如,在生产条件不变的情况下,产品的强力、抗压强度、口径、长度等指标;同一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气体分子的速度分量,等等。
一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可以认为这个量具有正态分布(见中心极限定理)。从理论上看,正态分布具有很多良好的性质 ,许多概率分布可以用它来近似;还有一些常用的概率分布是由它直接导出的,例如对数正态分布、t分布、F分布等。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.904秒