什么是微积分?它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。
无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。比如,子弹飞出枪膛的瞬间速度就是微分的概念,子弹每个瞬间所飞行的路程之和就是积分的概念 如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。
微积分堪称是人类智慧最伟大的成就之一。从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。
整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分支的还是牛顿和莱布尼茨。 从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了。
公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287—前212)的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,比如庄周所著的《庄子》一书中的“天下篇”中,著有“一尺之棰,日取其半,万世不竭”。
三国时期的刘徽在他的割圆术中提出“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”。他在1615年《测量酒桶体积的新科学》一书中,就把曲线看成边数无限增大的直线形。
圆的面积就是无穷多个三角形面积之和,这些都可视为典型极限思想的佳作。意大利数学家卡瓦列利在1635年出版的《连续不可分几何》,就把曲线看成无限多条线段(不可分量)拼成的。
这些都为后来的微积分的诞生作了思想准备。 17世纪生产力的发展推动了自然科学和技术的发展,不但已有的数学成果得到进一步巩固、充实和扩大,而且由于实践的需要,开始研究运动着的物体和变化的量,这样就获得了变量的概念,研究变化着的量的一般性和它们之间的依赖关系。
到了17世纪下半叶,在前人创造性研究的基础上,英国大数学家、物理学家艾萨克·牛顿(1642-1727)是从物理学的角度研究微积分的,他为了解决运动问题,创立了一种和物理概念直接联系的数学理论,即牛顿称之为“流数术”的理论,这实际上就是微积分理论。牛顿的有关“流数术”的主要著作是《求曲边形面积》、《运用无穷多项方程的计算法》和《流数术和无穷极数》。
这些概念是力学概念的数学反映。牛顿认为任何运动存在于空间,依赖于时间,因而他把时间作为自变量,把和时间有关的固变量作为流量,不仅这样,他还把几何图形——线、角、体,都看作力学位移的结果。
因而,一切变量都是流量。 牛顿指出,“流数术”基本上包括三类问题。
(l)“已知流量之间的关系,求它们的流数的关系”,这相当于微分学。 (2)已知表示流数之间的关系的方程,求相应的流量间的关系。
这相当于积分学,牛顿意义下的积分法不仅包括求原函数,还包括解微分方程。 (3)“流数术”应用范围包括计算曲线的极大值、极小值、求曲线的切线和曲率,求曲线长度及计算曲边形面积等。
牛顿已完全清楚上述(l)与(2)两类问题中运算是互逆的运算,于是建立起微分学和积分学之间的联系。 牛顿在1665年5月20目的一份手稿中提到“流数术”,因而有人把这一天作为诞生微积分的标志。
莱布尼茨使微积分更加简洁和准确 而德国数学家莱布尼茨(G.W.Leibniz 1646-1716)则是从几何方面独立发现了微积分,在牛顿和莱布尼茨之前至少有数十位数学家研究过,他们为微积分的诞生作了开创性贡献。但是池们这些工作是零碎的,不连贯的,缺乏统一性。
莱布尼茨创立微积分的途径与方法与牛顿是不同的。莱布尼茨是经过研究曲线的切线和曲线包围的面积,运用分析学方法引进微积分概念、得出运算法则的。
牛顿在微积分的应用上更多地结合了运动学,造诣较莱布尼茨高一筹,但莱布尼茨的表达形式采用数学符号却又远远优于牛顿一筹,既简洁又准确地揭示出微积分的实质,强有力地促进了高等数学的发展。 莱布尼茨创造的微积分符号,正像印度——阿拉伯数码促进了算术与代数发展一样,促进了微积分学的发展,莱布尼茨是数学史上最杰出的符号创造者之一。
牛顿当时采用的微分和积分符号现在不用了,而莱布尼茨所采用的符号现今仍在使用。莱布尼茨比别人更早更明确地认识到,好的符号能大大节省思维劳动,运用符号的技巧是数学成功的关键之一。
第二讲 微积分基本公式教学目的:掌握微积分基本公式和变上限积分的性质 难 点:变上限积分的性质与应用重 点:牛顿----莱布尼兹公式由上一节可以看到,尽管定积分可以用“和式极限”来计算,但利用定义来计算定积分一般是相当复杂和困难的,有时甚至是不可能的. 因此,我们必须寻求计算定积分的简便方法. 不难注意到下面的事实:设变速直线运动的速度为 ,路程为 ,则在时间区间 内运动的距离为 ;另一方面,由上节的分析可知,该距离应为 .由此有 (1)即: 在 上的积分等于它的一个原函数在 的增量. 这一结论是否具有普遍意义呢?下面来回答这个问题.1.变上限的积分设函数 在区间 上连续, ,则 在 上连续,故积分 存在,称为变上限的积分. 为避免上限与积分变量混淆,将它改记为 . 显然,对 上任一点 ,都有一个确定的积分值与之对应(图5-6),所以它在 上定义了一个函数,记作 .即 . (2)函数 具有如下重要性质: 定理1 如果 在区间 上连续,则由(2) 式定义的积分上限的函数 在 上可导,且有 . (3)证 当上限在点 处有增量 时, .由于 在此区间连续,由积分中值定理得 ( 介于 与 之间).故 .当 时, . 再由 的连续性得 .推论 若函数 在区间 连续,则变上限的函数 是 在 上的一个原函数.由推论可知:连续函数必有原函数. 由此证明了上一章给出的原函数存在定理.例1 求下列函数的导数:(1) ; (2) .解 (1) .(2) .例2 设 均可导,求 的导数.解 .注 是 的复合函数,它由 , 复合而成,求导时要用复合函数求导公式计算, 的导数计算与 完全相似. 例3 求极限 .解 此极限为 型,用洛必达法则求解,故2.牛顿-莱布尼茨公式现在我们来证明对任意连续函数与(1)式相应的结论成立.定理2 牛顿(Newton)-莱布尼茨(Leibniz)公式 如果函数 是连续函数 在区间 上的一个原函数,则 (4)证 由于 与 均为 的原函数,由原函数的性质知 .上式中令 ,得 ;再令 ,得 .即 .公式(4)称为牛顿-莱布尼茨公式.牛顿-莱布尼茨公式是17世纪后叶由牛顿与莱布尼茨各自独立地提出来的,它揭示了定积分与导数的逆运算之间的关系,因而被称为微积分基本定理. 这个定理为定积分的计算提供了一种简便的方法. 在运用时常将公式写出如下形式: (5)例4 计算 .解 .例5 计算 .解 .例6 计算 .解 .例7 求 .解 由区间可加性,得. 例8 求正弦曲线 在 上与 轴所围成的平面图形(图5-7)的面积.解 这个曲边梯形的面积 .例9 设 .求 .解 因为定积分 是一个常数,所以,可设 =A,故 .上式两边在[0,1]上积分得A= ,移项后,得 ,所以 .小结:1.变上限的积分 如果 在区间 上连续,则有 .2.牛顿-莱布尼茨公式 ,其中 是 的一个原函数,而原函数可以用不定积分的方法求得.。
函数的和、差求导法则 函数的和差求导法则 法则:两个可导函数的和(差)的导数等于这两个函数的导数的和(差). 用公式可写为:。
其中u、v为可导函数。 例题:已知,求 解答: 例题:已知,求 解答:函数的积商求导法则 常数与函数的积的求导法则 法则:在求一个常数与一个可导函数的乘积的导数时,常数因子可以提到求导记号外面去。
用公式可写成: 例题:已知,求 解答:函数的积的求导法则 法则:两个可导函数乘积的导数等于第一个因子的导数乘第二个因子,加上第一个因子乘第二个因子的导数。用公式可写成: 例题:已知,求 解答: 注:若是三个函数相乘,则先把其中的两个看成一项。
函数的商的求导法则 法则:两个可导函数之商的导数等于分子的导数与分母导数乘积减去分母导数与分子导数的乘积,在除以分母导数的平方。用公式可写成: 例题:已知,求 解答:不定积分的概念 原函数的概念 已知函数f(x)是一个定义在某区间的函数,如果存在函数F(x),使得在该区间内的任一点都有 dF'(x)=f(x)dx, 则在该区间内就称函数F(x)为函数f(x)的原函数。
例:sinx是cosx的原函数。 关于原函数的问题 函数f(x)满足什么条件是,才保证其原函数一定存在呢?这个问题我们以后来解决。
若其存在原函数,那末原函数一共有多少个呢? 我们可以明显的看出来:若函数F(x)为函数f(x)的原函数, 即:F"(x)=f(x), 则函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数, 故:若函数f(x)有原函数,那末其原函数为无穷多个.不定积分的概念 函数f(x)的全体原函数叫做函数f(x)的不定积分, 记作。 由上面的定义我们可以知道:如果函数F(x)为函数f(x)的一个原函数,那末f(x)的不定积分就是函数族 F(x)+C. 即:=F(x)+C 例题:求:. 解答:由于,故=不定积分的性质 1、函数的和的不定积分等于各个函数的不定积分的和; 即: 2、求不定积分时,被积函数中不为零的常数因子可以提到积分号外面来, 即: 求不定积分的方法换元法 换元法(一):设f(u)具有原函数F(u),u=g(x)可导,那末F[g(x)]是f[g(x)]g'(x)的原函数. 即有换元公式: 例题:求 解答:这个积分在基本积分表中是查不到的,故我们要利用换元法。
设u=2x,那末cos2x=cosu,du=2dx,因此: 换元法(二):设x=g(t)是单调的,可导的函数,并且g'(t)≠0,又设f[g(t)]g'(t)具有原函数φ(t), 则φ[g(x)]是f(x)的原函数.(其中g(x)是x=g(t)的反函数) 即有换元公式: 例题:求 解答:这个积分的困难在于有根式,但是我们可以利用三角公式来换元. 设x=asint(-π/2<t<π/2),那末,dx=acostdt,于是有: 关于换元法的问题 不定积分的换元法是在复合函数求导法则的基础上得来的,我们应根据具体实例来选择所用的方法,求不定积分不象求导那样有规则可依,因此要想熟练的求出某函数的不定积分,只有作大量的练习。分部积分法 这种方法是利用两个函数乘积的求导法则得来的。
设函数u=u(x)及v=v(x)具有连续导数.我们知道,两个函数乘积的求导公式为: (uv)'=u'v+uv',移项,得 uv'=(uv)'-u'v,对其两边求不定积分得: , 这就是分部积分公式 例题:求 解答:这个积分用换元法不易得出结果,我们来利用分部积分法。 设u=x,dv=cosxdx,那末du=dx,v=sinx,代入分部积分公式得: 关于分部积分法的问题 在使用分部积分法时,应恰当的选取u和dv,否则就会南辕北辙。
选取u和dv一般要考虑两点: (1)v要容易求得; (2)容易积出。
微积分公式 Dx sin x=cos x cos x = -sin x tan x = sec2 x cot x = -csc2 x sec x = sec x tan x csc x = -csc x cot x sin x dx = -cos x + C cos x dx = sin x + C tan x dx = ln |sec x | + C cot x dx = ln |sin x | + C sec x dx = ln |sec x + tan x | + C csc x dx = ln |csc x - cot x | + C sin-1(-x) = -sin-1 x cos-1(-x) = - cos-1 x tan-1(-x) = -tan-1 x cot-1(-x) = - cot-1 x sec-1(-x) = - sec-1 x csc-1(-x) = - csc-1 x Dx sin-1 ()= cos-1 ()= tan-1 ()= cot-1 ()= sec-1 ()= csc-1 (x/a)= sin-1 x dx = x sin-1 x++C cos-1 x dx = x cos-1 x-+C tan-1 x dx = x tan-1 x- ln (1+x2)+C cot-1 x dx = x cot-1 x+ ln (1+x2)+C sec-1 x dx = x sec-1 x- ln |x+|+C csc-1 x dx = x csc-1 x+ ln |x+|+C sinh-1 ()= ln (x+) xR cosh-1 ()=ln (x+) x≥1 tanh-1 ()=ln () |x| 1 sech-1()=ln(+)0≤x≤1 csch-1 ()=ln(+) |x| >0 Dx sinh x = cosh x cosh x = sinh x tanh x = sech2 x coth x = -csch2 x sech x = -sech x tanh x csch x = -csch x coth x sinh x dx = cosh x + C cosh x dx = sinh x + C tanh x dx = ln | cosh x |+ C coth x dx = ln | sinh x | + C sech x dx = -2tan-1 (e-x) + C csch x dx = 2 ln || + C duv = udv + vdu duv = uv = udv + vdu → udv = uv - vdu cos2θ-sin2θ=cos2θ cos2θ+ sin2θ=1 cosh2θ-sinh2θ=1 cosh2θ+sinh2θ=cosh2θ Dx sinh-1()= cosh-1()= tanh-1()= coth-1()= sech-1()= csch-1(x/a)= sinh-1 x dx = x sinh-1 x-+ C cosh-1 x dx = x cosh-1 x-+ C tanh-1 x dx = x tanh-1 x+ ln | 1-x2|+ C coth-1 x dx = x coth-1 x- ln | 1-x2|+ C sech-1 x dx = x sech-1 x- sin-1 x + C csch-1 x dx = x csch-1 x+ sinh-1 x + C sin 3θ=3sinθ-4sin3θ cos3θ=4cos3θ-3cosθ →sin3θ= (3sinθ-sin3θ) →cos3θ= (3cosθ+cos3θ) sin x = cos x = sinh x = cosh x = 正弦定理:= ==2R 余弦定理: a2=b2+c2-2bc cosα b2=a2+c2-2ac cosβ c2=a2+b2-2ab cosγ sin (α±β)=sin α cos β ± cos α sin β cos (α±β)=cos α cos β sin α sin β 2 sin α cos β = sin (α+β) + sin (α-β) 2 cos α sin β = sin (α+β) - sin (α-β) 2 cos α cos β = cos (α-β) + cos (α+β) 2 sin α sin β = cos (α-β) - cos (α+β) sin α + sin β = 2 sin (α+β) cos (α-β) sin α - sin β = 2 cos (α+β) sin (α-β) cos α + cos β = 2 cos (α+β) cos (α-β) cos α - cos β = -2 sin (α+β) sin (α-β) tan (α±β)=, cot (α±β)= ex=1+x+++…++ … sin x = x-+-+…++ … cos x = 1-+-+++ ln (1+x) = x-+-+++ tan-1 x = x-+-+++ (1+x)r =1+rx+x2+x3+ -1= n = n (n+1) = n (n+1)(2n+1) = [ n (n+1)]2 Γ(x) = x-1e-t dt = 22x-1dt = x-1 dt β(m, n) =m-1(1-x)n-1 dx=22m-1x cos2n-1x dx = dx。
线性代数:简单说就是y=ax+b类的函数,理解斜率a的概念。因为微积分分析是把复杂的曲线用线性的方式去理解,并求解。
三角函数:简单的sinx,cosx之类涉及到旋转就会用到sinx,conx之类。sinx^2+cosx^2=1等
几何:勾股定理等最简单最普遍的定力,不需要太深入。
然后就可以开始学习了。上述内容涉及越深越好,不过不需要很深入基础的理解就可以。
微积分是一种思想,一种对事物的分析方式,当然很复杂的需要很多技巧也就是需要很多数学函数等的性质,但理解微积分思想和分析方式不需要那么高深的数学技巧以及函数性质。
最重要的是坚持,因为微积分说它玄不玄,说不玄也挺玄的东西。看悟性了。
还有不要看国内的微积分书籍,可能有很好的,不过我看了几本都想睡觉,可以这样理解书上的是文言文“废话多”,其实在高深的理论能做到用白话说明才是牛B的。所以去网上搜索国外的教学视频,他们都是实际的题,形象的去描述问题。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.751秒