不好意思,告诉你答案是在害您,为了您的学业成绩,我只能告诉您知识点 从整个学科上来看,高数实际上是围绕着极限、导数和积分这三种基本的运算展开的。
对于每一种运算,我们首先要掌握它们主要的计算方法;熟练掌握计算方法后,再思考利用这种运算我们还可以解决哪些问题,比如会计算极限以后:那么我们就能解决函数的连续性,函数间断点的分类,导数的定义这些问题。这样一梳理,整个高数的逻辑体系就会比较清晰。
极限部分: 极限的计算方法很多,总结起来有十多种,这里我们只列出主要的:四则运算,等价无穷小替换,洛必达法则,重要极限,泰勒公式,中值定理,夹逼定理,单调有界收敛定理。每种方法具体的形式教材上都有详细的讲述,考生可以自己回顾一下,不太清晰的地方再翻到对应的章节看一看。
会计算极限之后,我们来说说直接通过极限定义的基本概念: 通过极限,我们定义了函数的连续性:函数在处连续的定义是,根据极限的定义,我们知道该定义又等价于。所以讨论函数的连续性就是计算极限。
然后是间断点的分类,具体标准如下: 从中我们也可以看出,讨论函数间断点的分类,也仅需要计算左右极限。 再往后就是导数的定义了,函数在处可导的定义是极限存在,也可以写成极限存在。
这里的极限式与前面相比要复杂一点,但本质上是一样的。最后还有可微的定义,函数在处可微的定义是存在只与有关而与 无关的常数使得时,有,其中。
直接利用其定义,我们可以证明函数在一点可导和可微是等价的,它们都强于函数在该点连续。 以上就是极限这个体系下主要的知识点。
导数部分: 导数可以通过其定义计算,比如对分段函数在分段点上的导数。但更多的时候,我们是直接通过各种求导法则来计算的。
主要的求导法则有下面这些:四则运算,复合函数求导法则,反函数求导法则,变上限积分求导。其中变上限积分求导公式本质上应该是积分学的内容,但出题的时候一般是和导数这一块的知识点一起出的,所以我们就把它归到求导法则里面了。
能熟练运用这些基本的求导法则之后,我们还需要掌握几种特殊形式的函数导数的计算:隐函数求导,参数方程求导。我们对导数的要求是不能有不会算的导数。
这一部分的题目往往不难,但计算量比较大,需要考生有较高的熟练度。 然后是导数的应用。
导数主要有如下几个方面的应用:切线,单调性,极值,拐点。每一部分都有一系列相关的定理,考生自行回顾一下。
这中间导数与单调性的关系是核心的考点,考试在考查这一块时主要有三种考法:①求单调区间或证明单调性;②证明不等式;③讨论方程根的个数。同时,导数与单调性的关系还是理解极值与拐点部分相关定理的基础。
另外,数学三的考生还需要注意导数的经济学应用;数学一和数学二的考生还要掌握曲率的计算公式。 积分部分: 一元函数积分学首先可以分成不定积分和定积分,其中不定积分是计算定积分的基础。
对于不定积分,我们主要掌握它的计算方法:第一类换元法,第二类换元法,分部积分法。这三种方法要融会贯通,掌握各种常见形式函数的积分方法。
熟练掌握不定积分的计算技巧之后再来看一看定积分。定积分的定义考生需要稍微注意一下,考试对定积分的定义的要求其实就是两个方面:会用定积分的定义计算一些简单的极限;理解微元法(分割、近似、求和、取极限)。
至于可积性的严格定义,考生没有必要掌握。然后是定积分这一块相关的定理和性质,这中间我们就提醒考生注意两个定理:积分中值定理和微积分基本定理。
这两个定理的条件要记清楚,证明过程也要掌握,考试都直接或间接地考过。至于定积分的计算,我们主要的方法是利用牛顿—莱布尼兹公式借助不定积分进行计算,当然还可以利用一些定积分的特殊性质(如对称区间上的积分)。
一般来说,只要不定积分的计算没问题,定积分的计算也就不成问题。定积分之后还有个广义积分,它实际上就是把积分过程和求极限的过程结合起来了。
考试对这一部分的要求不太高,只要掌握常见的广义积分收敛性的判别,再会进行一些简单的计算就可以了。 会计算积分了,再来看一看定积分的应用。
定积分的应用分为几何应用和物理应用。其中几何应用包括平面图形面积的计算,简单的几何体(主要是旋转体)体积的计算,曲线弧长的计算,旋转曲面面积的计算。
物理应用主要是一些常见物理量的计算,包括功,压力,质心,引力,转动惯量等。其中数学一和数学二的考生需要全部掌握;数学三的考生只需掌握平面图形面积的计算,简单的几何体(主要是旋转体)体积的计算。
这一部分题目的综合性往往比较强,对考生综合能力要求较高。 这就是高等数学整个学科从三种基本运算的角度梳理出来的主要知识点。
除此之外,考生需要掌握的知识点还有多元函数微积分,它实际上是将一元函数中的极限,连续,可导,可微,积分等概念推广到了多元函数的情况,考生可以按照上面一样的思路来总结。另外还有两章:级数、微分方程。
它们可以看做是对前面知识点综合的应用。比如微分方程,它实际上就是积分学的推广,解微分方程就是。
既然超基础的题,为什么不自己做呢,哎!5、y'=-e^(-x)cos(3-x)+e^(-x)sin(3-x)=e^(-x)(sin(3-x)-cos(3-x)), 所以dy=e^(-x)(sin(3-x)-cos(3-x))dx;6、原不定积分=Sx^2dsinx=x^2sinx-2Sxsinxdx=x^2sinx+2Sxdcosx=x^2sinx+2xcosx-2Scosxdx=x^2sinx+2xcosx-2sinx+C.7、原定积分=2S(0->pi/2)costd(sint)=S(0->pi/2)(cos2t+1)dt=pi/2.8、这题不给你答案,给你思路,把两条曲线向上平移1个单位,得y=x^2和y=3x+4,然后求两曲线的交点,主要是取横坐标,有两个点,然后分别求变形后两曲线在这两点之间的积分,再把直线的积分减去抛物线的积分可求得.9、原式=e^(lim3x/sinx)=e^3. (嫌过程太简单,就要好好学习哦)。
既然超基础的题,为什么不自己做呢,哎!5、y'=-e^(-x)cos(3-x)+e^(-x)sin(3-x)=e^(-x)(sin(3-x)-cos(3-x)), 所以dy=e^(-x)(sin(3-x)-cos(3-x))dx;6、原不定积分=Sx^2dsinx=x^2sinx-2Sxsinxdx=x^2sinx+2Sxdcosx=x^2sinx+2xcosx-2Scosxdx=x^2sinx+2xcosx-2sinx+C.7、原定积分=2S(0->pi/2)costd(sint)=S(0->pi/2)(cos2t+1)dt=pi/2.8、这题不给你答案,给你思路,把两条曲线向上平移1个单位,得y=x^2和y=3x+4,然后求两曲线的交点,主要是取横坐标,有两个点,然后分别求变形后两曲线在这两点之间的积分,再把直线的积分减去抛物线的积分可求得.9、原式=e^(lim3x/sinx)=e^3. (嫌过程太简单,就要好好学习哦)。
1.(1+1/2)(1+1/3)(1+1/4).(1+1/100) 2.(1-1/2)(1-1/3)(1-1/4).(1-1/100) 3.8+2-8+2 4.25*4/25*4 5.7.26-(5.26-1.5) 6.286+198 7.314-202 8.526+301 9.223-99 10.6.25+3.85-2.125+3.875 11.9-2456*21 12.0.5/11.5-4*2.75 13.1/2*3/5 14.3.375+5.75+2.25+6.625 15.1001-9036÷18。
第一:求极限 无论数学一、数学二还是数学三,求极限是高等数学的基本要求,所以也是每年必考的内容。
区别在于有时以4分小题形式出现,题目简单;有时以大题出现,需要使用的方法综合性强。比如大题可能需要用到等价无穷小代换、泰勒展开式、洛必达法则、分离因子、重要极限等中的几种方法,有时考生需要选择其中简单易行的组合完成题目。
另外,分段函数有的点的导数,函数图形的渐近线,以极限形式定义的函数的连续性、可导性的研究等也需要使用极限手段达到目的,须引起注意! 第二:利用中值定理证明等式或不等式,利用函数单调性证明不等式 证明题不能说每年一定考,但基本上十年有九年都会涉及。 等式的证明包括使用4个微分中值定理,1个积分中值定理;不等式的证明有时既可使用中值定理,也可使用函数单调性。
这里泰勒中值定理的使用是一个难点,但考查的概率不大。 第三:一元函数求导数,多元函数求偏导数 求导问题主要考查基本公式及运算能力,当然也包括对函数关系的处理能力。
一元函数求导可能会以参数方程求导、变现积分求导或应用问题中涉及求导,甚或高阶导数;多元函数(主要为二元函数)的偏导数基本上每年都会考查,给出的函数可能是较为复杂的显函数,也可能是隐函数(包括方程组确定的隐函数)。 另外,二元函数的极值与条件极值与实际问题联系极其紧密,是一个考查重点。
极值的充分条件、必要条件均涉及二元函数的偏导数。 第四:级数问题 常数项级数(特别是正项级数、交错级数)的判别,条件收敛与绝对收敛的本质含义均是考查的重点,但常常以小题形式出现。
函数项级数(幂级数,对数一来说还有傅里叶级数,但考查的频率不高)的收敛半径、收敛区间、收敛域、和函数等及函数在一点的幂级数展开在考试中常占有较高的分值。 第五:积分的计算 积分的计算包括不定积分、定积分、反常积分的计算,以及二重积分的计算,对考生来说数学主要是三重积分、曲线积分、曲面积分的计算。
这是以考查运算能力与处理问题的技巧能力为主,以对公式的熟悉及空间想象能力的考查为辅的。需要注意在复习中对一些问题的灵活处理,例如定积分几何意义的使用,重心、形心公式的反用,对称性的使用等。
第六:微分方程问题 解常微分方程方法固定,无论是一阶线性方程、可分离变量方程、齐次方程还是高阶常系数齐次与非齐次方程,只要记住常用形式,注意运算准确性,在考场上正确运算都没有问题。但这里需要注意:研究生考试对微分方程的考查常有一种反向方式,即平常给出方程求通解或特解,现在给出通解或特解求方程。
这需要考生对方程与其通解、特解之间的关系熟练掌握。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.234秒