前期准备 包括准备元件库和原理图。
在进行PCB设计之前,首先要准备好原理图SCH元件库和PCB元件封装库。 PCB元件封装库最好是工程师根据所选器件的标准尺寸资料建立。
原则上先建立PC的元件封装库,再建立原理图SCH元件库。 PCB元件封装库要求较高,它直接影响PCB的安装;原理图SCH元件库要求相对宽松,但要注意定义好管脚属性和与PCB元件封装库的对应关系。
PCB结构设计 根据已经确定的电路板尺寸和各项机械定位,在PCB设计环境下绘制PCB板框,并按定位要求放置所需的接插件、按键/开关、螺丝孔、装配孔等等。 充分考虑和确定布线区域和非布线区域(如螺丝孔周围多大范围属于非布线区域)。
PCB布局设计 PCB布局设计是PCB整个设计流程中的首个重要工序,越复杂的PCB板,布局的好坏越能直接影响到后期布线的实现难易程度。 布局设计依靠电路板设计师的电路基础功底与设计经验丰富程度,对电路板设计师属于较高级别的要求。
初级电路板设计师经验尚浅、适合小模块布局设计或整板难度较低的PCB布局设计任务。 扩展资料:PCB布局规则:1、在通常情况下,所有的元件均应布置在电路板的同一面上,只有顶层元件过密时,才能将一些高度有限并且发热量小的器件,如贴片电阻、贴片电容、贴片IC等放在底层。
2、在保证电气性能的前提下,元件应放置在栅格上且相互平行或垂直排列,以求整齐、美观,在一般情况下不允许元件重叠;元件排列要紧凑,元件在整个版面上应分布均匀、疏密一致。3、电路板上不同组件相临焊盘图形之间的最小间距应在1MM以上。
4、离电路板边缘一般不小于2MM.电路板的最佳形状为矩形,长宽比为3:2或4:3.电路板面尺大于200MM乘150MM时,应考虑电路板所能承受的机械强度。
PCB基础知识 印刷电路板(Printed circuit board,PCB)几乎会出现在每一种电子设备当中。
如果在某样设备中有电子零件,那么它们也都是镶在大小各异的PCB上。除了固定各种小零件外,PCB的主要功能是提供上头各项零件的相互电气连接。
随着电子设备越来越复杂,需要的零件越来越多,PCB上头的线路与零件也越来越密集了。 标准的PCB长得就像这样。
裸板(上头没有零件)也常被称为「印刷线路板Printed Wiring Board(PWB)」。 板子本身的基板是由绝缘隔热、并不易弯曲的材质所制作成。
在表面可以看到的细小线路材料是铜箔,原本铜箔是覆盖在整个板子上的,而在制造过程中部份被蚀刻处理掉,留下来的部份就变成网状的细小线路了。这些线路被称作导线(conductor pattern)或称布线,并用来提供PCB上零件的电路连接。
为了将零件固定在PCB上面,我们将它们的接脚直接焊在布线上。在最基本的PCB(单面板)上,零件都集中在其中一面,导线则都集中在另一面。
这么一来我们就需要在板子上打洞,这样接脚才能穿过板子到另一面,所以零件的接脚是焊在另一面上的。因为如此,PCB的正反面分别被称为零件面(Component Side)与焊接面(Solder Side)。
如果PCB上头有某些零件,需要在制作完成后也可以拿掉或装回去,那么该零件安装时会用到插座(Socket)。由于插座是直接焊在板子上的,零件可以任意的拆装。
下面看到的是ZIF(Zero Insertion Force,零拨插力式)插座,它可以让零件(这里指的是CPU)可以轻松插进插座,也可以拆下来。插座旁的固定杆,可以在您插进零件后将其固定。
如果要将两块PCB相互连结,一般我们都会用到俗称「金手指」的边接头(edge connector)。金手指上包含了许多裸露的铜垫,这些铜垫事实上也是PCB布线的一部份。
通常连接时,我们将其中一片PCB上的金手指插进另一片PCB上合适的插槽上(一般叫做扩充槽Slot)。在计算机中,像是显示卡,声卡或是其它类似的界面卡,都是借着金手指来与主机板连接的。
PCB上的绿色或是棕色,是阻焊漆(solder mask)的颜色。这层是绝缘的防护层,可以保护铜线,也可以防止零件被焊到不正确的地方。
在阻焊层上另外会印刷上一层丝网印刷面(silk screen)。通常在这上面会印上文字与符号(大多是白色的),以标示出各零件在板子上的位置。
丝网印刷面也被称作图标面(legend)。单面板(Single-Sided Boards) 我们刚刚提到过,在最基本的PCB上,零件集中在其中一面,导线则集中在另一面上。
因为导线只出现在其中一面,所以我们就称这种PCB叫作单面板(Single-sided)。因为单面板在设计线路上有许多严格的限制(因为只有一面,布线间不能交叉而必须绕独自的路径),所以只有早期的电路才使用这类的板子。
双面板(Double-Sided Boards) 这种电路板的两面都有布线。不过要用上两面的导线,必须要在两面间有适当的电路连接才行。
这种电路间的「桥梁」叫做导孔(via)。导孔是在PCB上,充满或涂上金属的小洞,它可以与两面的导线相连接。
因为双面板的面积比单面板大了一倍,而且因为布线可以互相交错(可以绕到另一面),它更适合用在比单面板更复杂的电路上。多层板(Multi-Layer Boards) 为了增加可以布线的面积,多层板用上了更多单或双面的布线板。
多层板使用数片双面板,并在每层板间放进一层绝缘层后黏牢(压合)。板子的层数就代表了有几层独立的布线层,通常层数都是偶数,并且包含最外侧的两层。
大部分的主机板都是4到8层的结构,不过技术上可以做到近100层的PCB板。大型的超级计算机大多使用相当多层的主机板,不过因为这类计算机已经可以用许多普通计算机的集群代替,超多层板已经渐渐不被使用了。
因为PCB中的各层都紧密的结合,一般不太容易看出实际数目,不过如果您仔细观察主机板,也许可以看出来。 我们刚刚提到的导孔(via),如果应用在双面板上,那么一定都是打穿整个板子。
不过在多层板当中,如果您只想连接其中一些线路,那么导孔可能会浪费一些其它层的线路空间。埋孔(Buried vias)和盲孔(Blind vias)技术可以避免这个问题,因为它们只穿透其中几层。
盲孔是将几层内部PCB与表面PCB连接,不须穿透整个板子。埋孔则只连接内部的PCB,所以光是从表面是看不出来的。
在多层板PCB中,整层都直接连接上地线与电源。所以我们将各层分类为信号层(Signal),电源层(Power)或是地线层(Ground)。
如果PCB上的零件需要不同的电源供应,通常这类PCB会有两层以上的电源与电线层。零件封装技术插入式封装技术(Through Hole Technology) 将零件安置在板子的一面,并将接脚焊在另一面上,这种技术称为「插入式(Through Hole Technology,THT)」封装。
这种零件会需要占用大量的空间,并且要为每只接脚钻一个洞。所以它们的接脚其实占掉两面的空间,而且焊点也比较大。
但另一方面,THT零件和SMT(Surface Mounted Technology,表面黏着式)零件比起来,与PCB连接的构造比较好,关于这点我们稍后再谈。像是排线的插座,和类似的界。
PCB设计基本概念 1、“层(Layer) ”的概念 与字处理或其它许多软件中为实现图、文、色彩等的嵌套与合成而引入的“层”的概念有所同,Protel的“层”不是虚拟的,而是印刷板材料本身实实在在的各铜箔层。
现今,由于电子线路的元件密集安装。防干扰和布线等特殊要求,一些较新的电子产品中所用的印刷板不仅有上下两面供走线,在板的中间还设有能被特殊加工的夹层铜箔,例如,现在的计算机主板所用的印板材料多在4层以上。
这些层因加工相对较难而大多用于设置走线较为简单的电源布线层(如软件中的Ground Dever和Power Dever),并常用大面积填充的办法来布线(如软件中的ExternaI P1a11e和Fill)。上下位置的表面层与中间各层需要连通的地方用软件中提到的所谓“过孔(Via)”来沟通。
有了以上解释,就不难理解“多层焊盘”和“布线层设置”的有关概念了。举个简单的例子,不少人布线完成,到打印出来时方才发现很多连线的终端都没有焊盘,其实这是自己添加器件库时忽略了“层”的概念,没把自己绘制封装的焊盘特性定义为”多层(Mulii一Layer)的缘故。
要提醒的是,一旦选定了所用印板的层数,务必关闭那些未被使用的层,免得惹事生非走弯路。 2、过孔(Via) 为连通各层之间的线路,在各层需要连通的导线的交汇处钻上一个公共孔,这就是过孔。
工艺上在过孔的孔壁圆柱面上用化学沉积的方法镀上一层金属,用以连通中间各层需要连通的铜箔,而过孔的上下两面做成普通的焊盘形状,可直接与上下两面的线路相通,也可不连。一般而言,设计线路时对过孔的处理有以下原则:(1)尽量少用过孔,一旦选用了过孔,务必处理好它与周边各实体的间隙,特别是容易被忽视的中间各层与过孔不相连的线与过孔的间隙,如果是自动布线,可在“过孔数量最小化” ( Via Minimiz8tion)子菜单里选择“on”项来自动解决。
(2)需要的载流量越大,所需的过孔尺寸越大,如电源层和地层与其它层联接所用的过孔就要大一些。 3、丝印层(Overlay) 为方便电路的安装和维修等,在印刷板的上下两表面印刷上所需要的标志图案和文字代号等,例如元件标号和标称值、元件外廓形状和厂家标志、生产日期等等。
不少初学者设计丝印层的有关内容时,只注意文字符号放置得整齐美观,忽略了实际制出的PCB效果。他们设计的印板上,字符不是被元件挡住就是侵入了助焊区域被抹赊,还有的把元件标号打在相邻元件上,如此种种的设计都将会给装配和维修带来很大不便。
正确的丝印层字符布置原则是:”不出歧义,见缝插针,美观大方”。 4、SMD的特殊性 Protel封装库内有大量SMD封装,即表面焊装器件。
这类器件除体积小巧之外的最大特点是单面分布元引脚孔。因此,选用这类器件要定义好器件所在面,以免“丢失引脚(Missing Pins)”。
另外,这类元件的有关文字标注只能随元件所在面放置。 5、网格状填充区(External Plane )和填充区(Fill) 正如两者的名字那样,网络状填充区是把大面积的铜箔处理成网状的,填充区仅是完整保留铜箔。
初学者设计过程中在计算机上往往看不到二者的区别,实质上,只要你把图面放大后就一目了然了。正是由于平常不容易看出二者的区别,所以使用时更不注意对二者的区分,要强调的是,前者在电路特性上有较强的抑制高频干扰的作用,适用于需做大面积填充的地方,特别是把某些区域当做屏蔽区、分割区或大电流的电源线时尤为合适。
后者多用于一般的线端部或转折区等需要小面积填充的地方。 6、焊盘( Pad) 焊盘是PCB设计中最常接触也是最重要的概念,但初学者却容易忽视它的选择和修正,在设计中千篇一律地使用圆形焊盘。
选择元件的焊盘类型要综合考虑该元件的形状、大小、布置形式、振动和受热情况、受力方向等因素。Protel在封装库中给出了一系列不同大小和形状的焊盘,如圆、方、八角、圆方和定位用焊盘等,但有时这还不够用,需要自己编辑。
例如,对发热且受力较大、电流较大的焊盘,可自行设计成“泪滴状”,在大家熟悉的彩电PCB的行输出变压器引脚焊盘的设计中,不少厂家正是采用的这种形式。一般而言,自行编辑焊盘时除了以上所讲的以外,还要考虑以下原则: (1)形状上长短不一致时要考虑连线宽度与焊盘特定边长的大小差异不能过大; (2)需要在元件引角之间走线时选用长短不对称的焊盘往往事半功倍; (3)各元件焊盘孔的大小要按元件引脚粗细分别编辑确定,原则是孔的尺寸比引脚直径大0.2- 0.4毫米。
7、各类膜(Mask) 这些膜不仅是PcB制作工艺过程中必不可少的,而且更是元件焊装的必要条件。按“膜”所处的位置及其作用,“膜”可分为元件面(或焊接面)助焊膜(TOp or Bottom 和元件面(或焊接面)和阻焊膜(TOp or BottomPaste Mask)两类。
顾名思义,助焊膜是涂于焊盘上,提高可焊性能的一层膜,也就是在绿色板子上比焊盘略大的各浅色圆斑。阻焊膜的情况正好相反,为了使制成的板子适应波峰焊等焊接形式,要求板子上非焊盘处的铜箔不能粘锡,因此在焊盘以外的各部位都要涂覆一层涂料,用于阻止这些部位上锡。
可。
印刷电路板(Printed circuit board,PCB)
PCB(Printed Circuie Board)印制线路板的简称,通常把在绝缘材上,按预定设计,制成印制线路、印制元件或两者组合而成的导电图形称为印制电路。而在绝缘基材上提供元器件之间电气连接的导电图形,称为印制线路。这样就把印制电路或印制线路的成品板称为印制线路板,亦称为印制板或印制电路板。
标准的PCB上头没有零件,也常被称为“印刷线路板Printed Wiring Board(PWB)”.
PCB几乎我们能见到的电子设备都离不开它,小到电子手表、计算器、通用电脑,大到计算机、通迅电子设备、军用武器系统,只要有集成电路等电子无器件,它们之间电气互连都要用到PCB。除了固定各种小零件外,它提供集成电路等各种电子元器件固定装配的机械支撑、实现集成电路等各种电子元器件之间的布线和电气连接或电绝缘、提供所要求的电气特性,如特性阻抗等。同时为自动锡焊提供阻焊图形;为元器件插装、检查、维修提供识别字符和图形。随着电子设备越来越复杂,需要的零件越来越多,PCB上头的线路与零件也越来越密集了.
电路板的名称有:线路板,PCB板,铝基板,高抄频板,厚铜板,阻抗板,PCB,超薄线路板,超薄电路板,印刷(铜刻蚀技术)电路板等。
电路板使电路迷你化、直观化,对于固定电路的批量生产和优化2113用电器布局起重要作用。电路板可称为印刷线路板或印刷电路板,英文名称为(Printed Circuit Board)PCB、(Flexible Printed Circuit board)FPC线路板5261(FPC线路板又称柔性线路板柔性电路板是以聚酰亚胺或聚酯薄膜为基材制成的一种具有高度可靠性,绝佳的可挠性印刷电路板。
具有配线密度高、重量轻、厚度薄、弯折性好的特点!)和软硬结合板4102(reechas,Soft and hard combination plate)-FPC与PCB的诞生与发展,催生了软硬结合板这一新产品。因此,软硬结合板,就是柔性线路板与硬性线路板,经过压合等工序,按相关工1653艺要求组合在一起,形成的具有FPC特性与PCB特性的线路板。
布线(Layout)是PCB设计工程师最基本的工作技能之一。
走线的好坏将直接影响到整个系统的性能,大多数高速的设计理论也要最终经过Layout得以实现并验证,由此可见,布线在高速PCB设计中是至关重要的。下面将针对实际布线中可能遇到的一些情况,分析其合理性,并给出一些比较优化的走线策略。
主要从直角走线,差分走线,蛇形线等三个方面来阐述。1. 直角走线直角走线一般是PCB布线中要求尽量避免的情况,也几乎成为衡量布线好坏的标准之一,那么直角走线究竟会对信号传输产生多大的影响呢?从原理上说,直角走线会使传输线的线宽发生变化,造成阻抗的不连续。
其实不光是直角走线,顿角,锐角走线都可能会造成阻抗变化的情况。直角走线的对信号的影响就是主要体现在三个方面:一是拐角可以等效为传输线上的容性负载,减缓上升时间;二是阻抗不连续会造成信号的反射;三是直角尖端产生的EMI。
传输线的直角带来的寄生电容可以由下面这个经验公式来计算:-C=61W(Er)1/2/Z0 在上式中,C就是指拐角的等效电容(单位:pF),W指走线的宽度(单位:inch),εr指介质的介电常数,Z0就是传输线的特征阻抗。举个例子,对于一个4Mils的50欧姆传输线(εr为4.3)来说,一个直角带来的电容量大概为0.0101pF,进而可以估算由此引起的上升时间变化量:T10-90%=2.2*C*Z0/2 = 2.2*0.0101*50/2 = 0.556ps通过计算可以看出,直角走线带来的电容效应是极其微小的。
由于直角走线的线宽增加,该处的阻抗将减小,于是会产生一定的信号反射现象,我们可以根据传输线章节中提到的阻抗计算公式来算出线宽增加后的等效阻抗,然后根据经验公式计算反射系数:ρ=(Zs-Z0)/(Zs+Z0),一般直角走线导致的阻抗变化在7%-20%之间,因而反射系数最大为0.1左右。而且,从下图可以看到,在W/2线长的时间内传输线阻抗变化到最小,再经过W/2时间又恢复到正常的阻抗,整个发生阻抗变化的时间极短,往往在10ps之内,这样快而且微小的变化对一般的信号传输来说几乎是可以忽略的。
很多人对直角走线都有这样的理解,认为尖端容易发射或接收电磁波,产生EMI,这也成为许多人认为不能直角走线的理由之一。然而很多实际测试的结果显示,直角走线并不会比直线产生很明显的EMI。
也许目前的仪器性能,测试水平制约了测试的精确性,但至少说明了一个问题,直角走线的辐射已经小于仪器本身的测量误差。总的说来,直角走线并不是想象中的那么可怕。
至少在GHz以下的应用中,其产生的任何诸如电容,反射,EMI等效应在TDR测试中几乎体现不出来,高速PCB设计工程师的重点还是应该放在布局,电源/地设计,走线设计,过孔等其他方面。当然,尽管直角走线带来的影响不是很严重,但并不是说我们以后都可以走直角线,注意细节是每个优秀工程师必备的基本素质,而且,随着数字电路的飞速发展,PCB工程师处理的信号频率也会不断提高,到10GHz以上的RF设计领域,这些小小的直角都可能成为高速问题的重点对象。
2. 差分走线差分信号(Differential Signal)在高速电路设计中的应用越来越广泛,电路中最关键的信号往往都要采用差分结构设计,什么另它这么倍受青睐呢?在PCB设计中又如何能保证其良好的性能呢?带着这两个问题,我们进行下一部分的讨论。何为差分信号?通俗地说,就是驱动端发送两个等值、反相的信号,接收端通过比较这两个电压的差值来判断逻辑状态“0”还是“1”。
而承载差分信号的那一对走线就称为差分走线。差分信号和普通的单端信号走线相比,最明显的优势体现在以下三个方面:a.抗干扰能力强,因为两根差分走线之间的耦合很好,当外界存在噪声干扰时,几乎是同时被耦合到两条线上,而接收端关心的只是两信号的差值,所以外界的共模噪声可以被完全抵消。
b.能有效抑制EMI,同样的道理,由于两根信号的极性相反,他们对外辐射的电磁场可以相互抵消,耦合的越紧密,泄放到外界的电磁能量越少。c.时序定位精确,由于差分信号的开关变化是位于两个信号的交点,而不像普通单端信号依靠高低两个阈值电压判断,因而受工艺,温度的影响小,能降低时序上的误差,同时也更适合于低幅度信号的电路。
目前流行的LVDS(low voltage differential signaling)就是指这种小振幅差分信号技术。对于PCB工程师来说,最关注的还是如何确保在实际走线中能完全发挥差分走线的这些优势。
也许只要是接触过Layout的人都会了解差分走线的一般要求,那就是“等长、等距”。等长是为了保证两个差分信号时刻保持相反极性,减少共模分量;等距则主要是为了保证两者差分阻抗一致,减少反射。
“尽量靠近原则”有时候也是差分走线的要求之一。但所有这些规则都不是用来生搬硬套的,不少工程师似乎还不了解高速差分信号传输的本质。
下面重点讨论一下PCB差分信号设计中几个常见的误区。误区一:认为差分信号不需要地平面作为回流路径,或者认为差分走线彼此为对方提供回流途径。
造成这种误区的原因是被表面现象迷惑,或者对高速信号传输的机理认识还不够深入。从图1-8-15的接收端的结构可以看到,晶。
1、首先掌握一个PCB设计软件的使用。
这个是必须的。目前画板主要软件有PADS ,ALLEGRO 和AD(protel99)的升级版。
看你以后自己的定位是设计什么产品板子。如果是画简单的板子用AD或者PROTEL99就够了。
如果想要拿高工资,画复杂的板子,建议还是学PADS 或者ALLEGRO 。 很少人用AD或者99SE画复杂板子,基本上用这个的公司都是简单的2-4层板。
2、电子基础知识,虽然现在有很多大公司画板都是女生,不懂电子基础。
但是如果想要在PCB设计行业混的好,电子基础少不了。3、多看原理图。
画板一定要看懂原理图。看不懂原理图的PCB工程师画出来的绝对垃 圾 一块。
4、多找一些大牛画的PCB文件看看。
学习一下别人是怎么画板的。网 上很多PCB文件。
看别人的设计,是学习最快的方式。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.009秒