性状是指生物个体表现出来的形态特征和心理特征等。
相对性状是一种性状的不同表现类型。基因是控制形状的基本遗传单位,是DNA分子的片段,位于染色体上。
基因在细胞中成对成双的存在。控制同一性状的不同基因叫做等位基因。
等位基因有显、隐性之分,分别控制不同的相对形状。性状表现决定于生物体的基因组成。
性状遗传的原因是控制性状的基因随配子代代相传。 人和动物的染色体分为常染色体和性染色体。
男性体细胞中有一对异型的性染色体(XY),女性体细胞中有一对同型的性染色体(XX)。在传宗接代过程中,男性形成X精子和Y精子,女性产生一种X卵细胞。
生男生女决定于卵细胞和哪一种精子结合。 生物的变异分为两类:遗传的和不遗传的。
不遗传变异是由于环境条件直接作用与新陈代谢过程的结果;遗传的变异是由于遗传物质的改变引起的。环境既可以直接影响形状,也可以通过诱发遗传物质的改变来影响形状。
生物的形状表现叫做表现性,控制形状表现的基因组成叫做基因型。
表现形式基因型与环境共同作用的结果。 遗传病是遗传物质改变而引起的疾病,致病基因可通过配子在家族中传递,因而在患者家系中常常表现出一定的发病比例。
近亲结婚是遗传病的患病风险大大增加。遗传咨询与有效的产前诊断、选择性流产措施相配合,能够有效地降低遗传病发病率,改善遗传病患者的生活质量和提高社会人口素质。
程子惠 注。
》华盛顿邮报》7日在头版披露,美国境内的众多“未来健康预测中心”现在生意越来越好了。
这些机构的工作人员宣称,他们能根据人们提交的个体基因样本来推测某人未来一段时间内的身体状况走向,除了包括糖尿病、肝脏疾病、血栓、精神疾病等的发生率外,专家甚至还能预测酗酒和赌博倾向等等五花八门的内容。 以往,研究人员通过问卷调查配合家族病史等资料来推测某人未来的健康发展状况。
现在,人们只要提供口腔里的少许粘膜组织或几滴血就能完成“预测”。有关研究机构认为,现在可通过基因检测提前发现的潜在疾病高达1100多种。
不过,进行上述检测的费用需个人自行承担,检查一次至少要400美元以上。 检测机构根据结果向送检人提出调整生活方式或寻求医疗帮助的建议。
这样,人们就能至少提前“5年到20年”有针对性地采取措施来避免严重疾病发生。现在,纽约和洛杉矶等地出现了根据不同人基因特点制定的特别食谱,同时有关基因与饮食保健的书籍也十分畅销。
有人宣称,上述“预测”项目堪称人类基因研究的最新成果,可以让未来的医疗保健系统发生众多积极变化,尤其是让治疗方案更能有的放矢。不过,也有科学家认为,基因与人类健康、生活方式和外界环境之间的关系还有许多不为人知的秘密,因此广泛推行基因检测的做法并不成熟。
有些时候,盲目轻信所谓的基因检测结果而改变自己的生活方式可能要产生适得其反的效果。 有科学家指出,在人类基因组图谱成功绘制之后,以基因组为基础的营养学研究将给疾病治疗带来一场革命。
食物中的各种营养与体内不同类型基因之间的“互动”作用成为解决问题关键。根据这种说法,目前流行的所谓“饮食建议”将来会没有立足之地。
比如,并非所有的人都能通过饮用红酒来保持心脏动脉血管健康。最新研究表明,营养和基因之间在持续不断地进行着交互作用,某些食物会增强那些保护性基因或有害基因的活动,而另外一些食物则会抑制这些保护性基因或有害基因,从而对健康产生多种直接影响。
一些研究人员宣称,人体内至少存在150种在突变后能引发Ⅱ型糖尿病的基因,还有300种以上的基因突变与肥胖症有关。 2004年最新公布的人类基因组序列包含99%人类染色体基因组,错误率为十万分之一。
科学家根据更为精确的计算表明,人类基因数量实际在2万到2.5万之间。美国科学家已初步绘成了白、黑、黄三个人种基因组的差异图,其中只有不到0.01%的差异。
此外,近年来科学家对癌症基因的认识也大大加深。目前,治疗癌症可以有两个大方向:一个是用各种药物抑制或杀死癌细胞;另一个是修复和激活体内的抑癌基因,通过抑癌基因来治疗癌症,后者已经成为世界癌症研究最前沿的主要课题。
开展基因检测服务的公司介绍说,2002年,当这项业务刚刚出台的时候,前来要求检测的客户多数为富翁。现在,各种慢性病患者、运动员和普通人也纷至沓来,这说明大家都希望能早点找到让自己更健康的好方法。
有人用现身说法证明,检查暴露了某些自己无法了解的隐患。据悉,多数受检的基因都与人体处理某些维生素的过程有关。
氧核糖核酸(英语:Deoxyribonucleic acid,缩写为DNA)又称去氧核糖核酸,是一种分子,可组成遗传指令,以引导生物发育与生命机能运作。
主要功能是长期性的资讯储存,可比喻为“蓝图”或“食谱”[1]。其中包含的指令,是建构细胞内其他的化合物,如蛋白质与RNA所需。
带有遗传讯息的DNA片段称为基因,其他的DNA序列,有些直接以自身构造发挥作用,有些则参与调控遗传讯息的表现。DNA是一种长链聚合物,组成单位称为核苷酸,而糖类与磷酸分子借由酯键相连,组成其长链骨架。
每个糖分子都与四种碱基里的其中一种相接,这些碱基沿着DNA长链所排列而成的序列,可组成遗传密码,是蛋白质氨基酸序列合成的依据。读取密码的过程称为转录,是根据DNA序列复制出一段称为RNA的核酸分子。
多数RNA带有合成蛋白质的讯息,另有一些本身就拥有特殊功能,例如rRNA、snRNA与siRNA。在细胞内,DNA能组织成染色体结构,整组染色体则统称为基因组。
染色体在细胞分裂之前会先行复制,此过程称为DNA复制。对真核生物,如动物、植物及真菌而言,染色体是存放于细胞核内;对于原核生物而言,如细菌,则是存放在细胞质中的类核里。
染色体上的染色质蛋白,如组织蛋白,能够将DNA组织并压缩,以帮助DNA与其他蛋白质进行交互作用,进而调节基因的转录。DNA有多种不同的构象,其中有些构象之间在构造上的差异并不大。
目前已辨识出来的构象包括:A-DNA、B-DNA、C-DNA、D-DNA[47]、E-DNA[48]、H-DNA[49]、L-DNA[47]、P-DNA[50]与Z-DNA[26][51]。不过以现有的生物系统来说,自然界中可见的只有A-DNA、B-DNA与Z-DNA。
DNA所具有的构象可根据DNA序列、超螺旋的程度与方向、碱基上的化学修饰,以及溶液状态,如金属离子与多胺浓度来分类[52]。三种主要构象中以B型为细胞中最常见的类型[53],与另两种DNA双螺旋的差异,在于其几何形态与尺寸。
A-DNA又称A型DNA,为DNA双螺旋的一种形式,拥有与较普遍的B-DNA相似的右旋结构,但其螺旋较短较紧密。A-DNA是三种具有生物活性的DNA双螺旋结构,另两种则为B-DNA及Z-DNA。
一般只有脱水的DNA样本中才会出现,可用来作晶体学实验。此外当DNA与RNA混合配对时,也可能出现A-DNA形式的螺旋。
氧核糖核酸(英语:Deoxyribonucleic acid,缩写为DNA)又称去氧核糖核酸,是一种分子,可组成遗传指令,以引导生物发育与生命机能运作。主要功能是长期性的资讯储存,可比喻为“蓝图”或“食谱”[1]。其中包含的指令,是建构细胞内其他的化合物,如蛋白质与RNA所需。带有遗传讯息的DNA片段称为基因,其他的DNA序列,有些直接以自身构造发挥作用,有些则参与调控遗传讯息的表现。
DNA是一种长链聚合物,组成单位称为核苷酸,而糖类与磷酸分子借由酯键相连,组成其长链骨架。每个糖分子都与四种碱基里的其中一种相接,这些碱基沿着DNA长链所排列而成的序列,可组成遗传密码,是蛋白质氨基酸序列合成的依据。读取密码的过程称为转录,是根据DNA序列复制出一段称为RNA的核酸分子。多数RNA带有合成蛋白质的讯息,另有一些本身就拥有特殊功能,例如rRNA、snRNA与siRNA。
在细胞内,DNA能组织成染色体结构,整组染色体则统称为基因组。染色体在细胞分裂之前会先行复制,此过程称为DNA复制。对真核生物,如动物、植物及真菌而言,染色体是存放于细胞核内;对于原核生物而言,如细菌,则是存放在细胞质中的类核里。染色体上的染色质蛋白,如组织蛋白,能够将DNA组织并压缩,以帮助DNA与其他蛋白质进行交互作用,进而调节基因的转录。
DNA有多种不同的构象,其中有些构象之间在构造上的差异并不大。目前已辨识出来的构象包括:A-DNA、B-DNA、C-DNA、D-DNA[47]、E-DNA[48]、H-DNA[49]、L-DNA[47]、P-DNA[50]与Z-DNA[26][51]。不过以现有的生物系统来说,自然界中可见的只有A-DNA、B-DNA与Z-DNA。DNA所具有的构象可根据DNA序列、超螺旋的程度与方向、碱基上的化学修饰,以及溶液状态,如金属离子与多胺浓度来分类[52]。三种主要构象中以B型为细胞中最常见的类型[53],与另两种DNA双螺旋的差异,在于其几何形态与尺寸。
A-DNA又称A型DNA,为DNA双螺旋的一种形式,拥有与较普遍的B-DNA相似的右旋结构,但其螺旋较短较紧密。A-DNA是三种具有生物活性的DNA双螺旋结构,另两种则为B-DNA及Z-DNA。一般只有脱水的DNA样本中才会出现,可用来作晶体学实验。此外当DNA与RNA混合配对时,也可能出现A-DNA形式的螺旋。
基因就是具有遗传特性的DNA片段。一般一个基因对应着一个蛋白质或者一个蛋白亚基,或者RNA等大分子,是遗传的基本单位。
基因可以很容易改变,难的是产生可遗传的可控制的改变,你可以拿射线照射细胞,肯定能引起大量的基因突变,但是变成什么样就不知道了,反正绝大多数的突变都是不好的。 也可以用现代基因工程手段精确的产生一个突变,但是却不容易把这个突变从一个细胞扩大到一个个体,当然也有成功的例子,但是不多,因为整个操作过程是很难的。
人类的基因包含了人的遗传信息,如果能够完全破译,估计所有的疾病都能找到原因,就相当于掌握了上帝造人的密码(如果存在上帝的话),影响不可估量。
我国现在在人体基因方面的研究力量还很薄弱,虽然有个别科学家处于国际一流地位,但是那样的人太少了,根本没法跟国外的队伍相比,国外是成体系的研究,而国内只能是一个点一个点的研究。而且国内的科研大环境也不好,体制上就差很多。
基因工程genetic engineering
基因工程又称基因拼接技术和DNA重组技术,是以分子遗传学为理论基础, 以分子生物学和微生物学的现代方法为手段, 将不同来源的基因(DNA分子),按预先设计的蓝图, 在体外构建杂种DNA分子, 然后导入活细胞, 以改变生物原有的遗传特性、获得新品种、生产新产品。基因工程技术为基因的结构和功能的研究提供了有力的手段。
什么是基因工程?【简介】
基因工程是生物工程的一个重要分支,它和细胞工程、酶工程、蛋白质工程和微生物工程共同组成了生物工程。 所谓基因工程(genetic engineering)是在分子水平上对基因进行操作的复杂技术,是将外源基因通过体外重组后导入受体细胞内,使这个基因能在受体细胞内复制、转录、翻译表达的操作。它是用人为的方法将所需要的某一供体生物的遗传物质——DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源物质在其中“安家落户”,进行正常的复制和表达,从而获得新物种的一种崭新技术。
基因工程是在分子生物学和分子遗传学综合发展基础上于本世纪70年代诞生的一门崭新的生物技术科学。一般来说,基因工程是指在基因水平上的遗传工程,它是用人为方法将所需要的某一供体生物的遗传物质--DNA大分子提取出来,在离体条件下用适当的工具酶进行切割后,把它与作为载体的DNA分子连接起来,然后与载体一起导入某一更易生长、繁殖的受体细胞中,以让外源遗传物质在其中"安家落户",进行正常复制和表达,从而获得新物种的一种崭新的育种技术。 这个定义表明,基因工程具有以下几个重要特征:首先,外源核酸分子在不同的寄主生物中进行繁殖,能够跨越天然物种屏障,把来自任何一种生物的基因放置到新的生物中,而这种生物可以与原来生物毫无亲缘关系,这种能力是基因工程的第一个重要特征。第二个特征是,一种确定的DNA小片段在新的寄主细胞中进行扩增,这样实现很少量DNA样品"拷贝"出大量的DNA,而且是大量没有污染任何其它DNA序列的、绝对纯净的DNA分子群体。科学家将改变人类生殖细胞DNA的技术称为“基因系治疗”(germlinetherapy),通常所说的“基因工程”则是针对改变动植物生殖细胞的。无论称谓如何,改变个体生殖细胞的DNA都将可能使其后代发生同样的改变。
迄今为止,基因工程还没有用于人体,但已在从细菌到家畜的几乎所有非人生命物体上做了实验,并取得了成功。事实上,所有用于治疗糖尿病的胰岛素都来自一种细菌,其DNA中被插入人类可产生胰岛素的基因,细菌便可自行复制胰岛素。基因工程技术使得许多植物具有了抗病虫害和抗除草剂的能力;在美国,大约有一半的大豆和四分之一的玉米都是转基因的。目前,是否该在农业中采用转基因动植物已成为人们争论的焦点:支持者认为,转基因的农产品更容易生长,也含有更多的营养(甚至药物),有助于减缓世界范围内的饥荒和疾病;而反对者则认为,在农产品中引入新的基因会产生副作用,尤其是会破坏环境。
诚然,仍有许多基因的功能及其协同工作的方式不为人类所知,但想到利用基因工程可使番茄具有抗癌作用、使鲑鱼长得比自然界中的大几倍、使宠物不再会引起过敏,许多人便希望也可以对人类基因做类似的修改。毕竟,胚胎遗传病筛查、基因修复和基因工程等技术不仅可用于治疗疾病,也为改变诸如眼睛的颜色、智力等其他人类特性提供了可能。目前我们还远不能设计定做我们的后代,但已有借助胚胎遗传病筛查技术培育人们需求的身体特性的例子。比如,运用此技术,可使患儿的父母生一个和患儿骨髓匹配的孩子,然后再通过骨髓移植来治愈患儿。
随着DNA的内部结构和遗传机制的秘密一点一点呈现在人们眼前,特别是当人们了解到遗传密码是由 RNA转录表达的以后,生物学家不再仅仅满足于探索、提示生物遗传的秘密,而是开始跃跃欲试,设想在分子的水平上去干预生物的遗传特性。 如果将一种生物的 DNA中的某个遗传密码片断连接到另外一种生物的DNA链上去,将DNA重新组织一下,就可以按照人类的愿望,设计出新的遗传物质并创造出新的生物类型,这与过去培育生物繁殖后代的传统做法完全不同。 这种做法就像技术科学的工程设计,按照人类的需要把这种生物的这个“基因”与那种生物的那个“基因”重新“施工”,“组装”成新的基因组合,创造出新的生物。这种完全按照人的意愿,由重新组装基因到新生物产生的生物科学技术,就称为“基因工程”,或者说是“遗传工程”。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.021秒