物流信息分类编码标准化是信息分类标准化工作的一个专业领域和分支,其核心是将信息分类编码标准化技术应用到现代物流系统中,实现物流信息系统的自动数据采集和系统间的数据交换与资源共享,促进物流活动的社会化、现代化和合理化,在实践中做到'货畅其流'。
所谓信息分类编码就是对大量的信息进行合理分类,然后用代码加以表示。将信息分类编码以标准的形式发布,就构成了标准信息分类编码,或称标准信息分类代码。
人们通常借助代码进行手工方式或计算机方式的信息检索和查询,特别是在用计算机方式进行信息处理时,标准信息分类编码显得尤为重要。统一的信息分类编码是信息系统正常运转的前提。
美国从1945年起就开始研究标准信息分类编码问题,1952年起正式着手物资编码标准化工作,经过6年的时间完成了国家物资分类编码。中国从1979年起着手制定有关标准,到现在已经发布了几十个信息分类编码标准,特别是干部、人事管理信息系统指标体系分类与代码,基本做到了数据元与分类代码齐备,构筑了一个较为完整的代码体系。
[编辑本段]层次划分 物流信息系统物流信息分类编码标准体系总表分三个层次,第一层次为门类,第二层次为类别,第三层次为项目。整个标准体系分为三个门类。
第一门类为基础标准,这些标准是制定标准时所必须遵循的、全国统一的标准,是全国所有标准的技术基础和方法指南,具有较长时期的稳定性和指导性;第二门类为业务标准,它是针对物流活动(装卸、搬运、仓储、运输、包装和流通加工)的技术标准,对物流信息系统建设具有指导意义;第三门类为相关标准,它是伴随人类社会技术进步(特别是通信和信息处理技术进步)而产生的专门领域标准,其中EDI(电子数据交换)应用与商业贸易和政府审批(如报关等),它与物流活动密切相关,而GPS(全球定位系统)则是提供对运输工具(含运输物品)的动态实时跟踪和导航的工具系统,也与物流活动密切相关。 物流信息分类编码标准体系如下。
[编辑本段]基础标准 基础标准主要包括:《标准体系表编制原则和要求》GB/T13016-1991、《标准化工作导则 信息分类编码的编写规定》GB/T7026-1986、《信息分类编码的维护方法和规定》,建议尽快制定国家标准、《信息分类编码标准的管理规定》,建议尽快制定国家标准、《信息分类编码标准的注册规定》,建议尽快制定国家标准、《标准化工作导则信息分类编码的基本原则和方法》GB/T7027-1986、《文件格式分类与代码编制方法》GB/T13959-1992、《国家标准制定程序的阶段划分及代码》GB/T16733-1997、《事务特性表定义和原理》GB/T10091-1989、《数据处理校验码系统》GB/T17710-1999和 ISO7064-83、《信息分类编码通用术语》GB/T10113-1988。 [编辑本段]业务标准 业务标准分为六个类别:201物品分类编码标准是描述和表征物品的分类代码,其中不同的分类代码标准适用于不同的场合;202参与方分类代码标准用来标识物流活动参与各方(如发货人、收货人和保险人等);203位置分类编码标准可实现对物理位置和地理位置的唯一标识,如位置码可标识出仓库、货位等具体详细物理位置;204运输分类编码标准主要针对车辆、船舶和集装箱等进行标识;205单证分类编码标准规定标准单证,包括单证格式、单证指标和编码等;206时间和计量分类编码标准规定时间表示法和标准计量单位系统,是物流的基础。
具体应用如下: 物品分类编码标准主要包括:《全国工农业产品(商品、物资)分类与代码》GB/T7635-1987、《全国产品分类与代码可运输产品部分》将替代GB7635-87、《全国产品分类与代码不可运输产品部分》将替代GB7635-87、《中华人民共和国进出口商品分类和代码》正在制定国家标准、《通用商品条码》GB/T12904- 1998、《储运单元条码》GB/T16830-1997、《货物类型、包装类型和包装材料代码》GB/T16472-1996、《危险货物品名表》 GB/T12268-1990、《危险货物分类与品名编号》GB/T6944-1986、《中国煤炭编码系统》GB/T16772-1997、《瓶装压缩气体分类》GB/T16163-1996等。 参与方分类编码标准主要包括:《全国组织机构代码编制规则》GB/T11714-1997 并采用国际标准ISO6523、《全国组织机构代码信息数据库(基本库)机读格式规范》GB/T16987-1997、《位置码》GB/T16828- 1997、《公民身份证号码》GB/T11643-1998等。
位置分类编码标准主要包括:《中华人民共和国行政区划代码》GB/T2260-1999、《县以下行政区划代码编制规则》GB/T10 114 -1988、《中华人民共和国口岸及有关地点代码》GB/T15514-1995、《中国及世界主要海运贸易港口代码》GB/T7407-1987、《中华人民共和国铁路车站站名代码》GB/T13016-1991、《世界各国和地区名称代码》GB/T2659-1994并采用国际标准ISO3166- 93、《城市道路交叉口、街坊、市政工程管线编码规则》GB/T14395-1993、《位置码》GB/T16828-1997、建议制定以下国家标准《中国机场名称代码》和《仓储货位分类代码编码规则》等。 运输分类编码标准主要包括:《集装箱运输。
数据编码数据的基本内容是:
通过编码可建立数据间的内在联系,便于计算机识别和管理。地理信息系统中主要的数据编码是服务于空间信息分析的地理编码。
即为识别图形点、线、面或格网位置及属性而建立的编码方法,包括拓扑编码和坐标编码。
前者是表示空间数据位置相邻逻辑关系的编码方法;后者是表示空间数据位置在某一坐标系统下的量度,可以是隐式的(对格网数据)或显式的。
扩展资料:
常见编码方案:
1、单极性码
在这种编码方案中,只适用正的(或负的)电压表示数据。单极性码用在电传打字机接口以及PC机和TTY兼容的接口中,这种代码需要单独的时钟信号配合定时,否则当传送一长串0或1时,发送机和接收机的时钟将无法定时,单极性码的抗噪声特性也不好。
2、极性码
在这种编码中,分别用正和负电压表示二进制数“0”和“1”。这种代码的电平差比单极码大,因而抗干扰特性好,但仍需另外的时钟信号。
3、双极性码
信号在三个电平(正、负、零)之间变化。一种典型的双极性码就是信号反转交替编码。在AMI信号中,数据流遇到“1”时使电平在正和负之间交替翻转,而遇到“0”时则保持零电平。
4、归零码
归零码(Return to Zero,RZ),即码元中间信号回归到零电平,比如从正电平到零电平的转换表示码元“0”,而从负电平到零电平表示码元“1”。
5、双相码
双相码要求每一位中都要有一个电平转换。因而这种代码的最大优点是自定时,同时双相码也有检测错误的功能,如果某一位中间缺少了电平翻转,则被认为是违例代码。
6、非归零电平编码
非归零电平编码(Non-Return to Zero Level,NRZ-L),即不使用0电平,用正电平表示“1”,负电平表示“0”。
7、非归零反相编码
非归零反相编码(Non-Return to Zero Inverted,NRZ-I),即当“1”出现时电平翻转,当“0”出现时电平不翻转。这种代码也叫差分码。
8、曼彻斯特码
曼彻斯特码(Manchester),高电平到低电平的转换边表示"0",低电平到高电平的转换边表示"1",位中间的电平转换边既表示数据代码,也作定时信号使用。曼彻斯特编码用在以太网中。
9、差分曼彻斯特码
差分曼彻斯特码(Differential Manchester),也叫做相位编码(PE);常用于局域网传输。在曼彻斯特编码中,每一位的中间有一跳变,“0”表示位的开头有跳变,“1”表示位的开头没有跳变,位中间的跳变既作时钟信号,又作数据信号。
10、多电平编码:
码元可取多个电平之一,每个码元可代表几个二进制位。
11、4B/5B编码
这是兆位快速以太网的光纤分布式数据接口(FDDI,Fiber Distributed Data Interface)中采用的信息编码方案。这种编码的特点是将欲发送的数据流每4bit作为一个组,每四位二进制代码由5位编码表示,这5位编码称为编码组(code group),并且由NRZI方式传输。
参考资料来源:搜狗百科-数据编码
常见的数据编码方案有:单极性码、极性码、双极性码、归零码、双相码、不归零码、曼彻斯特编码、差分曼彻斯特编码、多电平编码、4B/5B编码。
单极性码:在这种编码方案中,只适用正的(或负的)电压表示数据。单极性码用在电传打字机接口以及PC机和TTY兼容的接口中,这种代码需要单独的时钟信号配合定时,否则当传送一长串0或1时,发送机和接收机的时钟将无法定时,单极性码的抗噪声特性也不好。
极性码:在这种编码中,分别用正和负电压表示二进制数“0”和“1”。这种代码的电平差比单极码大,因而抗干扰特性好,但仍需另外的时钟信号。
双极性码:信号在三个电平(正、负、零)之间变化。一种典型的双极性码就是信号反转交替编码(AMI)。在AMI信号中,数据流遇到“1”时使电平在正和负之间交替翻转,而遇到“0”时则保持零电平。
归零码:(Return to Zero,RZ)码元中间信号回归到零电平,比如从正电平到零电平的转换表示码元“0”,而从负电平到零电平表示码元“1”。
双相码:双相码要求每一位中都要有一个电平转换。因而这种代码的最大优点是自定时,同时双相码也有检测错误的功能,如果某一位中间缺少了电平翻转,则被认为是违例代码。
非归零电平编码(Non-Return to Zero Level,NRZ-L):不使用0电平,用正电平表示“0”,负电平表示“1”。
非归零反相编码(Non-Return to Zero Inverted,NRZ-I):当“1”出现时电平翻转,当“0”出现时电平不翻转。这种代码也叫差分码。
曼彻斯特码(Manchester):高电平到低电平的转换边表示0,低电平到高电平的转换边表示1,位中间的电平转换边既表示数据代码,也作定时信号使用。曼彻斯特编码用在以太网中。
差分曼彻斯特码(Differential Manchester):也叫做相位编码(PE);常用于局域网传输。在曼彻斯特编码中,每一位的中间有一跳变,“0”表示位的开头有跳变,“1”表示位的开头没有跳变,位中间的跳变既作时钟信号,又作数据信号。
多电平编码:码元可取多个电平之一,每个码元可代表几个二进制位。
4B/5B编码:百兆位快速以太网的光纤分布式数据接口(FDDI,Fiber Distributed Data Interface)中采用的信息编码方案。这种编码的特点是将欲发送的数据流每4bit作为一个组,每四位二进制代码由5位编码表示,这5位编码称为编码组(code group),并且由NRZI方式传输。
在一般情况下,用振幅恒定载波的存在与否来表示两个二进制字。
ASK方式的编码效率较低,容易受增益变化的影响,抗干扰性较差。在音频电话线路上,一般只能达到 1 200 b/s的传输速率。
(2) 频移键控(FSK)法:FSK(Frequency Shift Keying)是使用载波频率附近的两个不同频率来表示两个二进制值。FSK比ASK的编码效率高,不易受干扰的影响,抗干扰性较强。
在音频电话线路上的传输速率可以大于1 200 b/s。(3) 相移键控(PSK)法:PSK(Phase Shift Keying)是使用载波信号的相位移动来表示二进制数据。
在PSK方式中,信号相位与前面信号序列同相位的信号表示 0,信号相位与前面信号序列反相位的信号表示 1。PSK方式也可以用于多相的调制,例如在四相调制中可把每个信号序列编码为两位。
PSK方式具有很强的抗干扰能力,其编码效率比FSK还要高。在音频线路上,传输速率可达 9 600 b/s。
2. 数字数据的数字信号编码 常用的数字信号编码有不归零 NRZ (Non Return to Zero)码、差分不归零DNRZ 码、曼彻斯特(Manchester)码及差分曼彻斯特(Differential Manchester)码等。1) NRZ码NRZ码是用信号的幅度来表示二进制数据的,通常用正电压表示数据“1”,用负电压表示数据“0”,并且在表示一个码元时,电压均无需回到零,故称不归零码。
NRZ码的特点是一种全宽码,即一位码元占一个单位脉冲的宽度。全宽码的优点:一是每个脉冲宽度越大,发送信号的能量就越大这对于提高接收端的信噪比有利;二是脉冲时间宽度与传输带宽成反比关系,即全宽码在信道上占用较窄的频带,并且在频谱中包含了码位的速度。
NRZ码的主要缺点是:当数据流中连续出现0 或1时,接收端很难以分辨1个信号位的开始或结束,必须采用某种方法在发送端和接收端之间提供必要的信号定时同步。同时,这种编码还会产生直流分量的积累问题,这将导致信号的失真与畸变,使传输的可靠性降低,并且由于直流分量的存在,使得无法使用一些交流耦合的线路和设备。
因此,一般的数据传输系统都不采用这种编码方式。(2) DNRZ码DNRZ码是一种NRZ码的改进形式,它是用信号的相位变化来表示二进制数据的,一个信号位的起始处有跳变表示数据“1”,而无跳变表示数据“0”。
DNRZ码不仅保持了全宽码的优点,同时提高了信号的抗干扰性和易同步性。近年来,越来越多的高速网络系统采用了DNRZ码,成为主流的信号编码技术,在FDDI、100BASE-T及100VG-AnyLAN等高速网络中都采用了DNRZ编码。
其原因是在高速网络中要求尽量降低信号的传输带宽,以利于提高传输的可靠性和降低对传输介质带宽的要求。而DNRZ编码中的码元速率与编码时钟速率相一致,具有很高的编码效率,符合高速网络对信号编码的要求。
同时,为了解决数据流中连续出现0 或1时所带来的信号编码问题,通常采用两级编码方案,第一级是预编码器,对数据流进行预编码,使编码后的数据流不会出现连续 0 或连续 1,常用的预编码方法有4B5B、5B6B等;第二级是DNRZ编码,实现物理信号的传输。这种两级编码方案的编码效率可达到 80%以上。
例如,在4B5B编码中,每4位数据用5位编码来表示,即4位数据就会增加 1 位的编码开销,编码效率仍为80%。(3) 曼彻斯特码 在曼彻斯特码中,用一个信号码元中间电压跳变的相位不同来区分数据“1”和“0”,它用正的电压跳变表示“0”;用负的电压跳变表示“1”。
因此,这种编码也是一种相位码。由于电压跳变都发生在每一个码元的中间,接收端可以方便地利用它作为位同步时钟,因此这种编码也称为自同步码。
10Mb/s 以太网(Ethernet)采用这种曼彻斯特码。(4) 差分曼彻斯特码 差分曼彻斯特码是一种曼彻斯特码的改进形式,其差别在于:每个码元的中间跳变只作为同步时钟信号;而数据“0”和“1”的取值是用信号位的起始处有无跳变来表示,若有跳变则为“0”;若无跳变则为“1”。
这种编码的特点是每一位均用不同电平的两个半位来表示,因而始终能保持直流的平衡。这种编码也是一种自同步编码。
令牌环(Token-Ring)网采用这种差分曼彻斯特编码。这两种曼彻斯特编码主要用于中速网络(Ethernet为 10 Mb/s;Token-Ring最高为16 Mb/s)中,而高速网络并不采用曼彻斯特编码技术。
其原因是它的信号速率为数据速率的两倍,即对于 10 Mb/s的数据速率,则编码后的信号速率为 20 Mb/s,编码的有效率为 50%。对于 100 Mb/s的高速网络来说,200 Mb/s的信号速率无论对传输介质的带宽的要求,还是对传输可靠性的控制都未免太高了,将会增加信号传输技术的复杂性和实现成本,难以推广应用。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.365秒