一、描述性统计
描述性统计是一类统计方法的汇总,揭示了数据分布特性。它主要包括数据的频数分析、数据的集中趋势分析、数据离散程度分析、数据的分布以及一些基本的统计图形。
1、缺失值填充:常用方法有剔除法、均值法、决策树法。
2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以在做数据分析之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W检验、动差法。
二、回归分析
回归分析是应用极其广泛的数据分析方法之一。它基于观测数据建立变量间适当的依赖关系,以分析数据内在规律。
1. 一元线性分析
只有一个自变量X与因变量Y有关,X与Y都必须是连续型变量,因变量Y或其残差必须服从正态分布。
2. 多元线性回归分析
使用条件:分析多个自变量X与因变量Y的关系,X与Y都必须是连续型变量,因变量Y或其残差必须服从正态分布。
3.Logistic回归分析
线性回归模型要求因变量是连续的正态分布变量,且自变量和因变量呈线性关系,而Logistic回归模型对因变量的分布没有要求,一般用于因变量是离散时的情况。
4. 其他回归方法:非线性回归、有序回归、Probit回归、加权回归等。
三、方差分析
使用条件:各样本须是相互独立的随机样本;各样本来自正态分布总体;各总体方差相等。
1. 单因素方差分析:一项试验只有一个影响因素,或者存在多个影响因素时,只分析一个因素与响应变量的关系。
2. 多因素有交互方差分析:一顼实验有多个影响因素,分析多个影响因素与响应变量的关系,同时考虑多个影响因素之间的关系
3. 多因素无交互方差分析:分析多个影响因素与响应变量的关系,但是影响因素之间没有影响关系或忽略影响关系
4. 协方差分祈:传统的方差分析存在明显的弊端,无法控制分析中存在的某些随机因素,降低了分析结果的准确度。协方差分析主要是在排除了协变量的影响后再对修正后的主效应进行方差分析,是将线性回归与方差分析结合起来的一种分析方法。
四、假设检验
1. 参数检验
参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验 。
2. 非参数检验
非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一般性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。
适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。
1)虽然是连续数据,但总体分布形态未知或者非正态;
2)总体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下;
主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。
论文数据来源置于图名称的下方, 黑体,小五号。 如果数据来源于网站, 须写明网址; 如果数据来源于期刊等论文按参考文献的格式写明。 如果图是自创无须数据来源。
1、如果采用的数据是表格的形式,可以在表格的下方加上:资料来源于。
2、如果采用的数据是以文字的形式插入内容中,如[1]、[2],在最后的参考文献中标注来源。
3、也有的数据是以文字的形式插入内容中,如[1]、[2],然后在每页的下方插入脚注,表明数据的来源。
论文数据来源标注的格式:作者,作品的名称,出版社,出版年份,引用页码,甚至可以将段落都标上去,尽量把引用的数据来源说明清楚。
扩展资料:
论文写作注意事项:
1、论文摘要中应排除本学科领域已成为常识的内容;切忌把应在引言中出现的内容写入摘要;一般也不要对论文内容作诠释和评论(尤其是自我评价)。
2、不得简单重复题名中已有的信息。
3、结构严谨,表达简明,语义确切。摘要先写什么,后写什么,要按逻辑顺序来安排。句子之间要上下连贯,互相呼应。摘要慎用长句,句型应力求简单。每句话要表意明白,无空泛、笼统、含混之词,但摘要毕竟是一篇完整的短文,电报式的写法亦不足取。摘要不分段。
4、用第三人称。建议采用“对……进行了研究”、“报告了……现状”、“进行了……调查”等记述方法标明一次文献的性质和文献主题,不必使用“本文”、“作者”等作为主语。
5、要使用规范化的名词术语,不用非公知公用的符号和术语。新术语或尚无合适汉文术语的,可用原文或译出后加括号注明原文。
6、除了实在无法变通以外,一般不用数学公式和化学结构式,不出现插图、表格。
7、不用引文,除非该文献证实或否定了他人已出版的著作。
参考资料来源:百度百科-论文写作
数据库保证数据准确性的措施有:
方法一、数据库数据加密
数据加密可以有效防止数据库信息失密性的有效手段。通常加密的方法有替换、置换、混合加密等。虽然通过密钥的保护是数据库加密技术的重要手段,但如果采用同种的密钥来管理所有数据的话,对于一些不法用户可以采用暴力破解的方法进行攻击。
但通过不同版本的密钥对不同的数据信息进行加密处理的话,可以大大提高数据库数据的安全强度。这种方式主要的表现形式是在解密时必须对应匹配的密钥版本,加密时就尽量的挑选最新技术的版本。
方法二、强制存取控制
为了保证数据库系统的安全性,通常采取的是强制存取检测方式,它是保证数据库系统安全的重要的一环。强制存取控制是通过对每一个数据进行严格的分配不同的密级,例如政府,信息部门。在强制存取控制中,DBMS所管理的全部实体被分为主体和客体两大类。主体是系统中的活动实体,它不仅包括DBMS 被管理的实际用户,也包括代表用户的各进程。
客体是系统中的被动实体,是受主体操纵的,包括文件、基表、索引、视图等等。对于主体和客体,DBMS 为它们每个实例(值)指派一个敏感度标记。主客体各自被赋予相应的安全级,主体的安全级反映主体的可信度,而客体的安全级反映客体所含信息的敏感程度。对于病毒和恶意软件的攻击可以通过强制存取控制策略进行防范。但强制存取控制并不能从根本上避免攻击的问题,但可以有从较高安全性级别程序向较低安全性级别程序进行信息传递。
方法三、审计日志
审计是将用户操作数据库的所有记录存储在审计日志(Audit Log)中,它对将来出现问题时可以方便调查和分析有重要的作用。对于系统出现问题,可以很快得找出非法存取数据的时间、内容以及相关的人。从软件工程的角度上看,目前通过存取控制、数据加密的方式对数据进行保护是不够的。因此,作为重要的补充手段,审计方式是安全的数据库系统不可缺少的一部分,也是数据库系统的最后一道重要的安全防线。
参数,也叫参变量,是一个变量。 我们在研究当前问题的时候,关心某几个变量的变化以及它们之间的相互关系,其中有一个或一些叫自变量,另一个或另一些叫因变量。如果我们引入一个或一些另外的变量来描述自变量与因变量的变化,引入的变量本来并不是当前问题必须研究的变量,我们把这样的变量叫做参变量或参数。
参数是很多机械设置或维修上能用到的一个选项,字面上理解是可供参考的数据,但有时又不全是数据。对指定应用而言,它可以是赋予的常数值;在泛指时,它可以是一种变量,用来控制随其变化而变化的其他的量。简单说,参数是给我们参考的。
统计学中
描述总体特征的概括性数字度量,它是研究者想要了解的总体的某种特征值。
数学中
参数思想贯彻于解析几何中。对于几何变量,人们用含有字母的代数式来表示变量,这个代数式叫作参数式,其中的字母叫做参数。用图形几何性质与代数关系来连立整式,进而解题。同时“参数法 ”也是许许多多解题技巧的源泉。
参数方程
在给定的平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数x=f(t),y=φ(t),⑴且对于t的每一个允许值,由方程组⑴所确定的点m(x,y)都在这条曲线上,那么方程组⑴称为这条曲线的参数方程,联系x、y之间关系的变数称为参变数,简称参数。
总的分两种:
1 列表法
将实验数据按一定规律用列表方式表达出来是记录和处理实验数据最常用的方法。表格的设计要求对应关系清楚、简单明了、有利于发现相关量之间的物理关系;此外还要求在标题栏中注明物理量名称、符号、数量级和单位等;根据需要还可以列出除原始数据以外的计算栏目和统计栏目等。最后还要求写明表格名称、主要测量仪器的型号、量程和准确度等级、有关环境条件参数如温度、湿度等。
2 作图法
作图法可以最醒目地表达物理量间的变化关系。从图线上还可以简便求出实验需要的某些结果(如直线的斜率和截距值等),读出没有进行观测的对应点(内插法),或在一定条件下从图线的延伸部分读到测量范围以外的对应点(外推法)。此外,还可以把某些复杂的函数关系,通过一定的变换用直线图表示出来。例如半导体热敏电阻的电阻与温度关系为,取对数后得到,若用半对数坐标纸,以lgR为纵轴,以1/T为横轴画图,则为一条直线。
数据分析落实到实处,一般就是围绕用户漏斗展开的。也就是人们常说的访问-激活-留存-交易-推荐。
这核心的5步会有不同维度的细分。
获客:来源、渠道、关键字、着陆页、地域、设备、访问时间、跳出率、访问深度、停留时间、新客量等等;
激活:DAU(日活跃用户)、MAU(月活跃用户)
留存:日留存率、周留存率、月留存率
交易:订单量、订单金额、LTV
推荐:是否传播(k>1)
需要获取以上数据,可以通过ptengine通过漏斗细分得到可视化图表。一般来讲,同比(本周和上周)、环比(本月第一周和上月第一周)、定基比(所有数据和当年第一周)即可获得数据的变化情况。
以上,其实不用很专业也能做好数据分析,获取数据并不难,难的是你能洞察数据背后的意义。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.557秒