原发布者:nevermore137 1.逆序检验法1.1将N个数据分成M段,求取每段的平均值。
1.2计算均值序列逆序总数A。1.3计算统计量进行统计校验,观察Z是否符合N(0,1)分布。
当显著性水平时,若,则认为是平稳序列。2.游程检验法2.1求出序列均值,序列中比均值小的记为“-”,比均值大的记为“+”,得到符号序列。
2.2每一段连续相同的符号称为一个游程,计算游程总数r。2.3计算统计量进行统计校验,观察Z是否符合N(0,1)分布。
当显著性水平时,若,则认为是平稳序列。3.特征根检验法3.1拟合序列的适应性模型。
3.2求得由模型参数组成的特征方程的特征根,若所有特征根满足平稳性条件,则该序列是平稳的。4.参数检验法4.1利用自回归参数构造下表。
其中,为模型中自回归参数。以此类推,知道2n-3行只剩下三个元素。
4.2当且仅当同时满足下述三个条件,才是平稳序列。1)2)3)。
5.借助于递归图(RecurrencePlot,RP)进行直观分析5.1建立RP。RP是一个由黑点和白点以及两条时间轴组成的二维方阵,建立方法如下:设是某一动力系统相空间中的一条轨迹线,考察轨迹中某两个相点之间的距离是否小于选取的阈值,当距离小于选定的阈值,则代表这两个点是递归的,用一个黑点表示,否则代表不递归,用一个白点或者空格表示。
用方阵表示如下:是Heaviside函数,。5.2典型信号的RP。
均匀性:状态明显是平稳的。分裂:代表非平稳,信号有变化。
周期图形:信号存在周期性。单点:信号有较大波动,如果某信号RP中只有单点,则此信号很可能是随机过。
1、时间序列 取自某一个随机过程,如果此随机过程的随机特征不随时间变化,则我们称过程是平稳的;假如该随机过程的随机特征随时间变化,则称过程是非平稳的。 2、宽平稳时间序列的定义:设时间序列 ,对于任意的 , 和 ,满足: 则称 宽平稳。 3、Box-Jenkins方法是一种理论较为完善的统计预测方法。他们的工作为实际工作者提供了对时间序列进行分析、预测,以及对ARMA模型识别、估计和诊断的系统方法。使ARMA模型的建立有了一套完整、正规、结构化的建模方法,并且具有统计上的完善性和牢固的理论基础。 4、ARMA模型三种基本形式:自回归模型(AR:Auto-regressive),移动平均模型(MA:Moving-Average)和混合模型(ARMA:Auto-regressive Moving-Average)。 (1) 自回归模型AR(p):如果时间序列 满足 其中 是独立同分布的随机变量序列,且满足: , 则称时间序列 服从p阶自回归模型。或者记为 。 平稳条件:滞后算子多项式 的根均在单位圆外,即 的根大于1。 (2) 移动平均模型MA(q):如果时间序列 满足 则称时间序列 服从q阶移动平均模型。或者记为 。 平稳条件:任何条件下都平稳。 (3) ARMA(p,q)模型:如果时间序列 满足 则称时间序列 服从(p,q)阶自回归移动平均模型。或者记为 。 特殊情况:q=0,模型即为AR(p),p=0, 模型即为MA(q)。 二、时间序列的自相关分析 1、自相关分析法是进行时间序列分析的有效方法,它简单易行、较为直观,根据绘制的自相关分析图和偏自相关分析图,我们可以初步地识别平稳序列的模型类型和模型阶数。利用自相关分析法可以测定时间序列的随机性和平稳性,以及时间序列的季节性。 2、自相关函数的定义:滞后期为k的自协方差函数为: ,则 的自相关函数为: ,其中 。当序列平稳时,自相关函数可写为: 。 3、样本
自相关函数为: ,其中 ,它可以说明不同时期的数据之间的相关程度,其取值范围在-1到1之间,值越接近于1,说明时间序列的自相关程度越高。 4、样本的偏自相关函数: 其中, 。 5、时间序列的随机性,是指时间序列各项之间没有相关关系的特征。使用自相关分析图判断时间序列的随机性,一般给出如下准则: ①若时间序列的自相关函数基本上都落入置信区间,则该时间序列具有随机性; ②若较多自相关函数落在置信区间之外,则认为该时间序列不具有随机性。 6、判断时间序列是否平稳,是一项很重要的工作。运用自相关分析图判定时间序列平稳性的准则是:①若时间序列的自相关函数 在k>3时都落入置信区间,且逐渐趋于零,则该时间序列具有平稳性;②若时间序列的自相关函数更多地落在置信区间外面,则该时间序列就不具有平稳性。 7、ARMA模型的自相关分析 AR(p)模型的偏自相关函数 是以p步截尾的,自相关函数拖尾。MA(q)模型的自相关函数具有q步截尾性,偏自相关函数拖尾。这两个性质可以分别用来识别自回归模型和移动平均模型的阶数。ARMA(p,q)模型的自相关函数和偏相关函数都是拖尾的。 三、单位根检验和协整检验 1、单位根检验 ①利用迪基—福勒检验( Dickey-Fuller Test)和菲利普斯—佩荣检验(Philips-Perron Test),我们也可以测定时间序列的随机性,这是在计量经济学中非常重要的两种单位根检验方法,与前者不同的事,后一个检验方法主要应用于一阶自回归模型的残差不是白噪声,而且存在自相关的情况。 ②随机游动 如果在一个随机过程中, 的每一次变化均来自于一个均值为零的独立同分布,即随机过程 满足: , ,其中 独立同分布,并且: , 称这个随机过程是随机游动。它是一个非平稳过程。 ③单位根过程 设随机过程 满足: , ,其中 , 为一个平稳过程并且 ,,。 2、协整关系 如果两个或多个非平稳的时间序列,其某个现性组合后的序列呈平稳性,这样的时间序列间就被称为有协整关系存在。这是一个很重要的概念,我们利用Engle-Granger两步协整检验法和J 很高兴回答楼主的问题 如有错误请见谅
具体步骤如下:
1、创建Workfile:点击File/New/Workfile,输入起止日期
2、建立object输入数据:点击object/new object,定义数据文件名ex4_2并输入数据。将Workfile保存:点击File/save,而store只存储对象object。
3、画时序数据图:点击Workfile中的View/line graph。
4、用单位根法检验平稳性:点击View/Unit Root Test,比较ADF值。
5、结果分析:由图知:ADF_T=0.0722>-3.4946,则X序列非平稳。
6、模型识别:点击View/correlogram画自相关系数(AC)和偏自相,完成上述步骤后即可使用EViews进行平稳性检验。
稳健性检验检验的是实证结果是否随着参数设定的改变而发生变化,如果改变参数设定以后,结果发现符号和显著性发生了改变,说明不是robust的,需要寻找问题的所在。
一般根据自己文章的具体情况选择稳健性检验:
1. 从数据出发,根据不同的标准调整分类,检验结果是否依然显著;
2. 从变量出发,从其他的变量替换,如:公司size可以用total assets衡量,也可以用total sales衡量;
3. 从计量方法出发,可以用OLS, FIX EFFECT, GMM等来回归,看结果是否依然robust;
单位根检验、协整检验和格兰杰因果关系检验三者之间的关系 实证检验步骤:先做单位根检验,看变量序列是否平稳序列,若平稳,可构造回归模型等经典计量经济学模型;若非平稳,进行差分,当进行到第i次差分时序列平稳,则服从i阶单整(注意趋势、截距不同情况选择,根据P值和原假设判定)。
若所有检验序列均服从同阶单整,可构造VAR模型,做协整检验(注意滞后期的选择),判断模型内部变量间是否存在协整关系,即是否存在长期均衡关系。如果有,则可以构造VEC模型或者进行Granger因果检验,检验变量之间“谁引起谁变化”,即因果关系。
一、讨论一1、单位根检验是序列的平稳性检验,如果不检验序列的平稳性直接OLS容易导致伪回归。2、当检验的数据是平稳的(即不存在单位根),要想进一步考察变量的因果联系,可以采用格兰杰因果检验,但要做格兰杰检验的前提是数据必须是平稳的,否则不能做。
3、当检验的数据是非平稳(即存在单位根),并且各个序列是同阶单整(协整检验的前提),想进一步确定变量之间是否存在协整关系,可以进行协整检验,协整检验主要有EG两步法和JJ检验A、EG两步法是基于回归残差的检验,可以通过建立OLS模型检验其残差平稳性B、JJ检验是基于回归系数的检验,前提是建立VAR模型(即模型符合ADL模式)4、当变量之间存在协整关系时,可以建立ECM进一步考察短期关系,Eviews这里还提供了一个Wald-Granger检验,但此时的格兰杰已经不是因果关系检验,而是变量外生性检验,请注意识别二、讨论二1、格兰杰检验只能用于平稳序列!这是格兰杰检验的前提,而其因果关系并非我们通常理解的因与果的关系,而是说x的前期变化能有效地解释y的变化,所以称其为“格兰杰原因”。2、非平稳序列很可能出现伪回归,协整的意义就是检验它们的回归方程所描述的因果关系是否是伪回归,即检验变量之间是否存在稳定的关系。
所以,非平稳序列的因果关系检验就是协整检验。3、平稳性检验有3个作用:1)检验平稳性,若平稳,做格兰杰检验,非平稳,作协正检验。
2)协整检验中要用到每个序列的单整阶数。3)判断时间学列的数据生成过程。
三、讨论三其实很多人存在误解。有如下几点,需要澄清:第一,格兰杰因果检验是检验统计上的时间先后顺序,并不表示而这真正存在因果关系,是否呈因果关系需要根据理论、经验和模型来判定。
第二,格兰杰因果检验的变量应是平稳的,如果单位根检验发现两个变量是不稳定的,那么,不能直接进行格兰杰因果检验,所以,很多人对不平稳的变量进行格兰杰因果检验,这是错误的。第三,协整结果仅表示变量间存在长期均衡关系,那么,到底是先做格兰杰还是先做协整呢?因为变量不平稳才需要协整,所以,首先因对变量进行差分,平稳后,可以用差分项进行格兰杰因果检验,来判定变量变化的先后时序,之后,进行协整,看变量是否存在长期均衡。
第四,长期均衡并不意味着分析的结束,还应考虑短期波动,要做误差修正检验。
应用时间序列分析么?
首先先做一个时序图,得出你这个序列他是不平稳的,同时,自相关和偏相关检验,可以看到有拖尾现象,直观判断数据不平稳,有着严重的自相关性。因此建立模型之前,必须对序列进行平稳化处理。一般,我们用差分法来消除序列的趋势。一阶差分可以消除线性趋势,二阶差分则可以消除二次曲线趋势。
先做一阶差分,在eviews里面的操作:假设你要产生一阶差分的序列为x,且已经把序列x的数据导入eviews
在命令区键入:“series dx=d(x)” 再按回车键,eviews自然就帮你生成一个新的“dx”序列,即为一阶差分序列;二阶差分同样操作,“series d2x=d(dx)”
为进一步检验原始数列是否平稳,需对原始数据进行ADF检验。
然后那些个检验似乎要放到模型里才可以检验吧。AR,MA或者ARMA。一般我们用ARMA
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.642秒