每个Xi点有对应的函数值,区间被划分成n份。
所谓数值解,一般在难以求出函数的通解时就采用数值解法都要离散化,可以用有限元法、差分法、控制容积法。 有限元法适宜形状不规则的时候。差分法常导致不守恒。控制容积法保证了守恒又继承了差分比较简单等优点。 后两种方法我都使用过,还编过相应的计算程序解速度常何温度场,就给出n-1个点的函数值.划分份数愈多,将区间分成很多份(简单的是等分), 两点之间的差值即为步长,结果是在求解区间内
大学是数学吧!已知T<T1<0!
应该按固体解发先求出T值在算稳定性!
partial_t f(t,x,y) + \partial_x (a(t,x,y) f(t,x,y)) + \partial_y (b(t,x,y) f(t,x,y))=0, (考试不能这样写,一行过去!标准格式.否则老师可以把你整倒你都扣完)
可以求完T值后按在套数字进行运算 !
刚刚忘记说了,如果这种题是大提要在下面写个解字!如果是直接做要解你可以=在把题目抄一变!或直接原式=,可以直接做!
可分为两大分支:解析解法和数值解法。
只有很少一部分偏微分方程能求得解析解,所以实际应用中,多求数值解。
数值解法最常见的有三种:差分法(最普遍最通用)、有限体积法、有限元法,其他数值解法还有:正交配置法、微扰法(可解薛定谔方程)、变分法等等。
扩展资料:
导数(Derivative) 是微积分学中重要的基础概念。
对于定义域和值域都是实数域的函数f:R→R,若f(x)在点x 0 的某个邻域△x内,极限定义如下
f ′ (x 0 )= △x→0lim△xf(x 0 +△x)−f(x 0 ) (1.1)若极限存在,则称函数f(x)在点x 0 处可导,f′(x 0 )称为其导数,或导函数,也可以记为 dxdf(x 0 ) 。在几何上,导数可以看做函数曲线上的切线斜率。
给定一个连续函数,计算其导数的过程称为微分(Differentiation)。微分的逆过程为积分(Integration)。函数f(x)的积分可以写为
F(x)=∫f(x)dx(1.2)
其中F(x)称为f(x)的原函数。
若函数f(x)在其定义域包含的某区间内每一个点都可导,那么也可以说函数f(x)在这个区间内可导。如果一个函数f(x)在定义域中的所有点都存在导数,则f(x)为可微函数(Differentiable Function)。可微函数一定连续,但连续函数不一定可微。例如函数∣x∣为连续函数,但在点x = 0处不可导。下表是几个常见函数的导数:
参考资料来源:搜狗百科_微积分
《偏微分方程数值解法》根据教育部专业目录调整后的要求及计算数学的发展,在笔者修订版《微分方程数值解法》的基础上编写而成。
全书包括六章,第一、二章是变分形式和Galerkin有限元法,第三、四章和第五章是有限差分法和有限体积法,第六章是离散化方程的解法。《偏微分方程数值解法》是为信息与计算科学专业本科生编写的教材,但也可作为应用数学、力学及某些工程科学专业的教学用书。
《偏微分方程数值解法》介绍的求解偏微分方程的数值方法是基本的,对于从事科学技术及工程计算的专业人员也有参考价值。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.672秒