统计方法是指有关收集、整理、分析和解释统计数据,并对其所反映的问题作出一定结论的方法。统计方法是一种从微观结构上来研究物质的宏观性质及其规律的独特的方法。统计方法是适用于所有学科领域的通用数据分析方法,只要有数据的地方就会用到统计方 法。随着人们对定量研究的日益重视,统计方法已被应用到自然科学和社会科学的众多领域,统计学也已发展成为由若干分支学科组成的学科体系。可以说,几乎所有的研究领域都要用到统计方法,比如政府部门、学术研究领域、日常生活中、公司或企业的生产经营管理中都要用到统 计。
统计资料丰富且错综复杂,要想做到合理选用统计分析方法并非易事。对于同一个资料,若选择不同的统计分析方法处理,有时其结论是截然不同的。
正确选择统计方法的依据是:
①根据研究的目的,明确研究试验设计类型、研究因素与水平数;
②确定数据特征(是否正态分布等)和样本量大小;
③ 正确判断统计资料所对应的类型(计量、计数和等级资料),同时应根据统计方法的适宜条件进行正确的统计量值计算;
4.最后,还要根据专业知识与资料的实际情况,结合统计学原则,灵活地选择统计分析方法。
1.计量资料的统计方法
分析计量资料的统计分析方法可分为参数检验法和非参数检验法。
参数检验法主要为t检验和方差分析(ANOVN,即F检验)等,两组间均数比较时常用t检验和u检验,两组以上均数比较时常用方差分析;非参数检验法主要包括秩和检验等。t检验可分为单组设计资料的t检验、配对设计资料的t检验和成组设计资料的t检验;当两个小样本比较时要求两总体分布为正态分布且方差齐性,若不能满足以上要求,宜用t 检验或非参数方法(秩和检验)。方差分析可用于两个以上样本均数的比较,应用该方法时,要求各个样本是相互独立的随机样本,各样本来自正态总体且各处理组总体方差齐性。根据设计类型不同,方差分析中又包含了多种不同的方法。对于定量资料,应根据所采用的设计类型、资料所具备的条件和分析目的,选用合适的统计分析方法,不应盲目套用t检验和单因素方差分析。
2.计数资料的统计方法
计数资料的统计方法主要针对四格表和R*C表利用检验进行分析。 四格表资料:组间比较用
检验或u检验,若不能满足 检验:当计数资料呈配对设计时,获得的四格表为配对四格表,其用到的检验公式和校正公式可参考书籍。 R*C表可以分为双向无序,单向有序、双向有序属性相同和双向有序属性不同四类,不同类的行列表根据其研究目的,其选择的方法也不一样。
3.等级资料的统计方法
等级资料(有序变量)是对性质和类别的等级进行分组,再清点每组观察单位个数所得到的资料。在临床医学资料中,常遇到一些定性指标,如临床疗效的评价、疾病的临床分期、病症严重程度的临床分级等,对这些指标常采用分成若干个等级然后分类计数的办法来解决它的量化问题,这样的资料统计上称为等级资料。
统计方法是指有关收集、整理、分析和解释统计数据,并对其所反映的问题作出一定结论的方法。统计方法是一种从微观结构上来研究物质的宏观性质及其规律的独特的方法。
定义1
所谓统计方法是指用多次测量值采用一定方法计算出的标准不确定度。不同于A类的其它方法计算者称为B类标准不确定度或称为标准不确定度的B类计算法(typeBevaluation)。
定义2
在平均离子模型的基础上,发展了一个计算离子组态概率分布的有效方法,称为统计方法。
源自: 激光等离子体非平衡X射线发射谱理论研究《物理学报》1995年 裴文兵,常铁强,张钧
定义3
统计方法是指在不知道纹理基元或尚未监测出基元的情况下进行纹理分析,主要描述纹理基元或局部模式随机和空间统计特征,如灰度共生矩阵法、随机场模型法等。
源自: 利用纹理分析方法提取TM图像信息《遥感学报》2004年 姜青香,刘慧平
定义4
分子物理学就是用统计方法来研究的。大量个别的偶然事件存在着一定的规律,表现了这些事件的整体的本质和必然的联系。这种规律是客观存在的,统计的方法则是揭示这种规律的必要手段。统计方法只能适合于大量事件,研究的事件越多,得到的统计结果也越准确
统计学的基本研究方法有5种。
大量观察法这是统计活动过程中搜集数据资料阶段(即统计调查阶段)的基本方法:即要对所研究现象总体中的足够多数的个体进行观察和研究,以期认识具有规律性的总体数量特征。大量观察法的数理依据是大数定律,大数定律是指虽然每个个体受偶然因素的影响作用不同而在数量上几存有差异,但对总体而言可以相互抵消而呈现出稳定的规律性,因此只有对足够多数的个体进行观察,观察值的综合结果才会趋向稳定,建立在大量观察法基础上的数据资料才会给出一般的结论。
统计学的各种调查方法都属于大量观察法。统计分组法由于所研究现象本身的复杂性、差异性及多层次性,需要我们对所研究现象进行分组或分类研究,以期在同质的基础上探求不同组或类之间的差异性。
统计分组在整个统计活动过程中都占有重要地位,在统计调查阶段可通过统计分组法来搜集不同类的资料,并可使抽样调查的样本代表性得以提高(即分层抽样方式);在统计整理阶段可以通过统计分组法使各种数据资料得到分门别类的加工处理和储存,并为编制分布数列提供基础;在统计分析阶段则可以通过统计分组法来划分现象类型、研究总体内在结构、比较不同类或组之间的差异(显著性检验)和分析不同变量之间的相关关系。统计学中的统计分组法有传统分组法、判别分析法和聚类分析法等。
综合指标法统计研究现象的数量方面的特征是通过统计综合指标来反映的。所谓综合指标,是指用来从总体上反映所研究现象数量特征和数量关系的范畴及其数值,常见的有总量指标、相对指标,平均指标和标志变异指标等。
综合指标法在统计学、尤其是社会经济统计学中占有十分重要的地位,是描述统计学的核心内容。如何最真实客观地记录、描述和反映所研究现象的数量特征和数量关系,是统计指标理论研究的一大课题。
统计模型法在以统计指标来反映所研究现象的数量特征的同时,我们还经常需要对相关现象之间的数量变动关系进行定量研究,以了解某一(些)现象数量变动与另一(些)现象数量变动之间的关系及变动的影响程度。在研究这种数量变动关系时,需要根据具体的研究对象和一定的假定条件,用合适的数学方程来进行模拟,这种方法就叫做统计模型法。
统计推断法在统计认识活动中,我们所观察的往往只是所研究现象总体中的一部分单位,掌握的只是具有随机性的样本观察数据,而认识总体数量特征是统计研究的目的,这就需要我们根据概率论和样本分布理论,运用参数估计或假设检验的方法,由样本观测数据来推断总体数量特征。这种由样本来推断总体的方法就叫统计推断法。
统计推断法已在统计研究的许多领域得到应用,除了最常见的总体指标推断外,统计模型参数的估计和检验、统计预测中原时间序列的估计和检验等,也都属于统计推断的范畴,都存在着误差和置信度的问题。在实践中这是一种有效又经济的方法,其应用范围很广泛,发展很快,统计推断法已成为现代统计学的基本方法。
统计图的类型有:扇形统计图、折线统计图、条形统计图、半对数线图、散点图、直方图、统计地图。
常用的统计图,条形统计图、扇形统计图、折线统计图的特点:
1、条形图:
FineReport条形图用一个单位长度表示一定的数量,根据数量的多少,画成长短相应成比例的直条,并按一定顺序排列起来,这样的统计图,称为条形统计图。
条形统计图可以清楚地表明各种数量的多少。条形图是统计图资料分析中最常用的图形。按照排列方式的不同,可分为纵式条形图和横式条形图;按照分析作用的不同,可分为条形比较图和条形结构图。
条形统计图的特点:
(1)能够使人们一眼看出各个数据的大小。
(2)易于比较数据之间的差别。
(3)能清楚的表示出数量的多少。
2、扇形图:
以一个圆的面积表示事物的总体,以扇形面积表示占总体的百分数的统计图,叫作扇形统计图。也叫作百分数比较图。扇形统计图可以比较清楚地反映出部分与部分、部分与整体之间的数量关系。
扇形统计图的特点:
(1)用扇形的面积表示部分在总体中所占的百分比。
(2)易于显示每组数据相对于总数的大小。
3、折线图
以折线的上升或下降来表示统计数量的增减变化的统计图,叫作折线统计图。
与条形统计图比较,折线统计图不仅可以表示数量的多少,而且可以反映同一事物在不同时间里的发展变化的情况。折线图在生活中运用的非常普遍,虽然它不直接给出精确的数据,但只要掌握了一定的技巧,熟练运用“坐标法”也可以很快地确定某个具体的数据。
FineReport折线图折线统计图的特点:能够显示数据的变化趋势,反映事物的变化情况。
1、聚类分析(Cluster Analysis)
聚类分析指将物理或抽象对象的集合分组成为由类似的对象组成的多个类的分析过程。聚类是将数据分类到不同的类或者簇这样的一个过程,所以同一个簇中的对象有很大的相似性,而不同簇间的对象有很大的相异性。聚类分析是一种探索性的分析,在分类的过程中,人们不必事先给出一个分类的标准,聚类分析能够从样本数据出发,自动进行分类。聚类分析所使用方法的不同,常常会得到不同的结论。不同研究者对于同一组数据进行聚类分析,所得到的聚类数未必一致。
2、因子分析(Factor Analysis)
因子分析是指研究从变量群中提取共性因子的统计技术。因子分析就是从大量的数据中寻找内在的联系,减少决策的困难。
因子分析的方法约有10多种,如重心法、影像分析法,最大似然解、最小平方法、阿尔发抽因法、拉奥典型抽因法等等。这些方法本质上大都属近似方法,是以相关系数矩阵为基础的,所不同的是相关系数矩阵对角线上的值,采用不同的共同性□2估值。在社会学研究中,因子分析常采用以主成分分析为基础的反覆法。
3、相关分析(Correlation Analysis)
相关分析(correlation analysis),相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度。相关关系是一种非确定性的关系,例如,以X和Y分别记一个人的身高和体重,或分别记每公顷施肥量与每公顷小麦产量,则X与Y显然有关系,而又没有确切到可由其中的一个去精确地决定另一个的程度,这就是相关关系。
4、对应分析(Correspondence Analysis)
对应分析(Correspondence analysis)也称关联分析、R-Q型因子分析,通过分析由定性变量构成的交互汇总表来揭示变量间的联系。可以揭示同一变量的各个类别之间的差异,以及不同变量各个类别之间的对应关系。对应分析的基本思想是将一个联列表的行和列中各元素的比例结构以点的形式在较低维的空间中表示出来。
5、回归分析
研究一个随机变量Y对另一个(X)或一组(X1,X2,…,Xk)变量的相依关系的统计分析方法。回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。
6、方差分析(ANOVA/Analysis of Variance)
又称“变异数分析”或“F检验”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。方差分析是从观测变量的方差入手,研究诸多控制变量中哪些变量是对观测变量有显著影响的变量。这个 还需要具体问题具体分析
5 混凝土强度的检验评定5.1统计方法评定5.1.1采用统计方法评定时,应符合下列规定:1当连续生产的混凝土,生产条件在较长时间内能保持一致,且同一品种、同一强度等级混凝土的强度变异性保持稳定时,应按本标准第5.1.2条的规定进行评定。
2其它情况应按本标准5.1.4条的规定进行评定。5.1.2一个检验批的样本容量应为连续的三组试件,其强度应同时满足下列要求: ≥ +0.7 (5.1.2-1) ≥ -0.7 (5.1.2-2)当混凝土强度等级不高于C20时,其强度的最小值尚应满足下式要求: ≥0.85 (5.1.2-3)当混凝土强度等级高于C20时,其强度的最小值尚应满足下式要求: ≥0.90 (5.1.2-4)式中 — 同一检验批混凝土立方体抗压强度的平均值(N/mm2),精确到0.1(N/mm2); —混凝土立方体抗压强度标准值(N/mm2),精确到0.1(N/mm2); —检验批混凝土立方体抗压强度的标准差(N/mm2),精确到0.01(N/mm2);按本标准第5.1.3条计算。
当 计算值小于2.5N/mm2时,应取2.5 N/mm2。 —同一检验批混凝土立方体抗压强度的最小值(N/mm2),精确到0.1(N/mm2)。
5.1.3检验批混凝土立方体抗压强度的标准差,应根据前一个检验期内同一品种混凝土试件的强度数据,按下列公式计算: (5.1.3) 式中 — 第 组混凝土试件的立方体抗压强度代表值(N/mm2) ,精确到0.1(N/mm2); — 前一检验期内的样本容量。注:上述检验期不应少于60d也不宜超过90d,且在该期间内样本容量不应少于45。
5.1.4当样本容量不少于10组时,其强度应同时满足下列要求: ≥ + (5.1.4-1) ≥ (5.1.4-2)式中 —同一检验批混凝土立方体抗压强度的标准差(N/mm2),精确到0.01(N/mm2);按本标准第5.1.5条计算。当 计算值小于2.5N/mm2时,应取2.5 N/mm2。
, —合格判定系数,按表5.1.4取用。表5.1.4 混凝土强度的合格评定系数试件组数 10~14 15~19 ≥20 1.15 1.05 0.95 0.90 0.855.1.5 同一检验批混凝土立方体抗压强度的标准差,应按下列公式计算: (5.1.5)式中 — 本检验期内的样本容量。
5.2非统计方法评定5.2.1当用于评定的样本容量小于10组时,可采用非统计方法评定混凝土强度。5.2.2按非统计方法评定混凝土强度时,其强度应同时满足下列要求: ≥ (5.2.2-1) ≥ (5.2.2-2)式中 , —合格判定系数,按表5.2.2取用。
表5.2.2 混凝土强度的非统计法合格评定系数混凝土强度等级。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.409秒