专利名称提高功率放大器线性度及功率附加效率的电路结构的制作方法技术领域本发明涉及一种提高功率放大器线性度及功率附加效率的电路结构。
背景技术功率放大器是无线通信系统中一个关键的组件,其线性度和效率一直是被关注的焦点。随着第三代移动通信系统(如WCDMA,CDMA2000)的发展,线性调制技术越来越被广 泛采用。
功率放大器的线性度对于通信系统能否不失真地传输放大数据信号起着至关重要 的作用。功率放大器的线性度越好则经过放大器放大的信号波形越不容易产生畸变与失 真,从而使输入数据信号得到理想地放大并输出。
另外,功率放大器的效率也是另一个研究 的重点。功率放大器的耗能约占由其组成的无线通信发射系统耗能的1/3,提高其效率对于 提高整个发射系统的效率具有重要作用。
对于基站、雷达这类大功率无线通信发射系统来 讲,提高效率可以减小其损耗的功率,提高发射系统对能源的利用率;而对手机等利用电池 或者蓄电池供电的发射系统来讲,提高效率可以使这些设备工作时间更长。考虑到效率及 线性度对功率放大器的重要性,目前,如何使功率放大器在满足高线性度要求的情况下拥 有较高的效率成为研究的重点。
目前提高功率放大器线性度主要的几种方法包括前馈技术、反馈技术以及包络消 除与恢复技术等。前馈及反馈技术虽能有效提高功率放大器的线性度,但其会极大地降低 功率放大器的功率附加效率(PAE)。
包络消除与恢复技术虽然能在改善功率放大器线性度 的同时,不影响功率放大器的效率,但该技术所采用的电路结构非常复杂,不利用对电路的 设计,且使电路制造的成本增加。发明内容本发明目的是提供一种提高功率放大器线性度及功率附加效率的电路结构,使 得在不增大功率放大器静态功耗的情况下,既增强了功率放大器的谐波抑制,又显著提高 了功率放大器的线性度与功率附加效率。
本发明的技术方案是一种提高功率放大器线性度及功率附加效率的电路结构, 所述功率放大器设有输入晶体管及输出晶体管,它们串叠在一起构成Cascode结构,所述 输出晶体管的集电极与地之间连接有抑制二次谐波信号输出的二次谐波串联谐振网络,所 述输出晶体管的集电极与输出匹配网络之间连接有将三次谐波信号反射回集电极的三次 谐波并联谐振网络。利用谐振网络对谐波信号进行控制,从而抑制谐波信号输出,提高功率 放大器的线性度与功率附加效率。
进一步的,在上述提高功率放大器线性度及功率附加效率的电路结构中,所述二 次谐波串联谐振网络包括串联连接于所述输出晶体管的集电极和地之间的第四电容和第 二电感;即二次谐波串联谐振网络的输入端连接输出晶体管的集电极、输出端接地,它将集 电极输出的二次谐波信号短路到地。进一步的,在上述提高功率放大器线性度及功率附加效率的电路结构中,所述三次谐波并联谐振网络包括并联连接于所述输出晶体管的集电极和功率放大器的输出端口 输出匹配网络之前的第五电容和第三电感;即三次谐波并联谐振网络的输入端连接输出晶 体管的集电极、输出端连接功放电路的输出匹配网络,它对集电极输出的三次谐波信号开 路,将三次谐波信号反射回集电极。
在上述三次谐波并联谐振网络和功率放大电路的输出端之间设有输出端隔直电 容与输出匹配网络。进一步的,在上述提高功率放大器线性度及功率附加效率的电路结构中,所述功 率放大器电路为包括共射输入晶体管和共基输出晶体管的Cascode (共射共基)结构。
当 然,在其它类型的功率放大器电路中,在输出晶体管的集电极和输出端口之间也可以连接 上述二次谐波串联谐振网络和三次谐波并联谐振网络,达到提高了功率放大器的线性度与 功率附加效率的目的。进一步的,在上述提高功率放大器线性度及功率附加效率的电路结构中,所述 Cascode结构的输出晶体管的基极和地之间连接有二次谐波并联谐振网络,即所述二次谐 波并联谐振网络的输入端接输出晶体管的基极,输出端接地,它提高了基频信号的增益,抑 制了二次谐波信号。
进一步的,在上述提高功率放大器线性度及功率附加效率的电路结构中,所述二 次谐波并联谐振网络包括并联连接在输出晶体管的基极和地之间的第二电容和基频串联 谐振网络。进一步的,在上述提高功率放大器线性度及功率附加效率的电路结构中,所述基 频串联谐振网络包括串联连接的第一电感和第三电容。
本发明的优点是1.本发明在Cascode结构功率放大器输出晶体管集电极依次连接的二次谐波串 联谐振网络与三次谐波并联谐振网络,可用于提高其它类型功率放大器的线性度与功率附 加效率。2.本发明的Cascode电路在输出晶体管的基极连接二次谐波并联谐振网络,提高 了 Cascode电路对基频信号的增益并抑制Cascode电路对二次谐波信号的增益。
3.本发明的Cascode电路在输出晶体管的基极所连接的二次谐波并联谐振网络 可用于抑制Η次谐波信号。附图说明下面结合附图及实施例对本发明作进一步描述图1为本发明具体实施例的电路结构示意图;图2为本发明具体实施例二次谐波并联谐振网络作用示意图;图3为本发明具体实施例的输出晶体管。
1、功率放大器的三种工作方式:
(1)、工作没失真,功放能力比较强。
(2)、工作失真,功放能力比较强。
(3)、工作失真严重,半波损失,攻放能力强。
2、功率放大器(英文名称:power amplifier),简称"功放",是指在给定失真率条件下,能产生最大功率输出以驱动某一负载(例如扬声器)的放大器。功率放大器在整个音响系统中起到了"组织、协调"的枢纽作用,在某种程度上主宰着整个系统能否提供良好的音质输出。
射频功率放大器的非线性失真会使其产生新的频率分量,如对于二阶失真会产生二次谐波和双音拍频,对于三阶失真会产生三次谐波和多音拍频。这些新的频率分量如落在通带内,将会对发射的信号造成直接干扰,如果落在通带外将会干扰其他频道的信号。为此要对射频功率放大器的进行线性化处理,这样可以较好地解决信号的频谱再生问题。射频功放基本线性化技术的原理与方法不外乎是以输入RF信号包络的振幅和相位作为参考,与输出信号比较,进而产生适当的校正。实现射频功放线性化的常用技术有三种:功率回退、预失真、前馈。 这是最常用的方法,即选用功率较大的管子作小功率管使用,实际上是以牺牲直流功耗来提高功放的线性度。
功率回退法就是把功率放大器的输入功率从1dB压缩点(放大器有一个线性动态范围,在这个范围内,放大器的输出功率随输入功率线性增加。随着输入功率的继续增大,放大器渐渐进入饱和区,功率增益开始下降,通常把增益下降到比线性增益低1dB时的输出功率值定义为输出功率的1dB压缩点,用P1dB表示。)向后回退6-10个分贝,工作在远小于1dB压缩点的电平上,使功率放大器远离饱和区,进入线性工作区,从而改善功率放大器的三阶交调系数。一般情况,当基波功率降低1dB时,三阶交调失真改善2dB。
功率回退法简单且易实现,不需要增加任何附加设备,是改善放大器线性度行之有效的方法,缺点是效率大为降低。另外,当功率回退到一定程度,当三阶交调制达到-50dBc以下时,继续回退将不再改善放大器的线性度。因此,在线性度要求很高的场合,完全靠功率回退是不够的。 预失真就是在功率放大器前增加一个非线性电路用以补偿功率放大器的非线性失真。
预失真线性化技术,它的优点在于不存在稳定性问题,有更宽的信号频带,能够处理含多载波的信号。预失真技术成本较低,由几个仔细选取的元件封装成单一模块,连在信号源与功放之间,就构成预失真线性功放。手持移动台中的功放已采用了预失真技术,它仅用少量的元件就降低了互调产物几dB,但却是很关键的几dB。
预失真技术分为RF预失真和数字基带预失真两种基本类型。RF预失真一般采用模拟电路来实现,具有电路结构简单、成本低、易于高频、宽带应用等优点,缺点是频谱再生分量改善较少、高阶频谱分量抵消较困难。
数字基带预失真由于工作频率低,可以用数字电路实现,适应性强,而且可以通过增加采样频率和增大量化阶数的办法来抵消高阶互调失真,是一种很有发展前途的方法。这种预失真器由一个矢量增益调节器组成,根据查找表(LUT)的内容来控制输入信号的幅度和相位,预失真的大小由查找表的输入来控制。矢量增益调节器一旦被优化,将提供一个与功放相反的非线性特性。理想情况下,这时输出的互调产物应该与双音信号通过功放的输出幅度相等而相位相反,即自适应调节模块就是要调节查找表的输入,从而使输入信号与功放输出信号的差别最小。注意到输入信号的包络也是查找表的一个输入,反馈路径来取样功放的失真输出,然后经过A/D变换送入自适应调节DSP中,进而来更新查找表。 前馈技术起源于“反馈”,应该说它并不是什么新技术,早在二三十年代就由美国贝尔实验室提出来的。除了校准(反馈)是加于输出之外,概念上完全是“反馈”。
前馈线性放大器通过耦合器、衰减器、合成器、延时线、功分器等组成两个环路。射频信号输入后,经功分器分成两路。一路进入主功率放大器,由于其非线性失真,输出端除了有需要放大的主频信号外,还有三阶交调干扰。从主功放的输出中耦合一部分信号,通过环路1抵消放大器的主载频信号,使其只剩下反相的三阶交调分量。三阶交调分量经辅助放大器放大后,通过环路2抵消主放大器非线性产生的交调分量,从而了改善功放的线性度。
前馈技术既提供了较高校准精度的优点,又没有不稳定和带宽受限的缺点。当然,这些优点是用高成本换来的,由于在输出校准,功率电平较大,校准信号需放大到较高的功率电平,这就需要额外的辅助放大器,而且要求这个辅助放大器本身的失真特性应处在前馈系统的指标之上。
前馈功放的抵消要求是很高的,需获得幅度、相位和时延的匹配,如果出现功率变化、温度变化及器件老化等均会造成抵消失灵。为此,在系统中考虑自适应抵消技术,使抵消能够跟得上内外环境的变化。
假设运放工作电压是12V,增益是40dB,那么允许的最大输入时多少呢?
对于电压增益40dB,那么设电压放大倍数为X,20lgX=40,X=100,
就是电压放大倍数为100,那么允许最大输入设为Y,Y*100=12V,Y=120mV,
只要你的输入小于120mV那么就不会失真~懂啵?
你要查一下你用的运放的增益和电压~一般的pdf都会直接给出最大输入的
至于你说的输出功率~最大的输出电压*当时输出电流 就是了
就涉及了负载问题~只要你的负载和运放匹配~在允许的输入范围内~不会有线性失真~
首先要搞清楚:“功率损耗”是指晶体功放管集电极耗散功率么?(或电子管的 阳极功耗),如果是这样,则不一定是“输出功率是最大.功率损耗也最大”。
如甲类功放,集电极消耗的最大功率值出现在输出功率最小的时候; 乙类(或甲乙类)功放:其最大值不是在输出功率最小的时候,也不是输出功率最大的时候。 若“功率损耗”指的是电源功率消耗,则功放电路只能是乙类或甲乙类的时候, 才会出现“输出功率是最大.功率损耗也最大”。
而甲类功放无论有无功率输出,电源的消耗始终是相同的。
4,
Class A(A类也称甲类)、Class B(B类也称乙类)、Class AB(AB类也称甲乙类)、Class D(D类也称数字类)。以上都是汽车上常见的功放器..
1、纯甲类功率放大器
纯甲类功率放大器又称为A类功率放大器(Class A),它是一种完全的线性放大形式的放大器。在纯甲类功率放大器工作时,晶体管的正负通道不论有或没有信号都处于常开状态,这就意味着更多的功率消耗为热量,但失真率极低。纯甲类功率放大器在汽车音响的应用中比较少见,像意大利的Sinfoni高级系列才有这类功率放大器。这是因为纯甲类功率放大器的效率非常低,通常只有20-30%,但音响发烧友们对它的声音表现津津乐道。
2、乙类功率放大器
乙类功率放大器,也称为B类功率放大器(Class B),它也被称为线性放大器,但是它的工作原理与纯甲类功率放大器完全不同。B类功放在工作时,晶体管的正负通道通常是处于关闭的状态除非有信号输入,也就是说,在正相的信号过来时只有正相通道工作,而负相通道关闭,两个通道绝不会同时工作,因此在没有信号的部分,完全没有功率损失。但是在正负通道开启关闭的时候,常常会产生跨越失真,特别是在低电平的情况下,所以B类功率放大器不是真正意义上的高保真功率放大器。在实际的应用中,其实早期许多的汽车音响功放都是B类功放,因为它的效率比较高。
3、甲乙类功率放大器
甲乙类功率放大器也称为AB类功率放大器(Class AB),它是兼容A类与B类功放的优势的一种设计。当没有信号或信号非常小时,晶体管的正负通道都常开,这时功率有所损耗,但没有A类功放严重。当信号是正相时,负相通道在信号变强前还是常开的,但信号转强则负通道关闭。当信号是负相时,正负通道的工作刚好相反。AB类功率放大器的缺陷在于会产生一点点的交越失真,但是相对于它的效率比以及保真度而言,都优于A类和B类功放,AB类功放也是目前汽车音响中应用最为广泛的设计。
4、D类功率放大器
D类放大器与上述A,B或AB类放大器不同,其工作原理基于开关晶体管,可在极短的时间内完全导通或完全截止。两只晶体管不会在同一时刻导通,因此产生的热量很少。这种类型的放大器效率极高(90%左右),在理想情况下可达100%,而相比之下AB类放大器仅能达到78.5%。不过另一方面,开关工作模式也增加了输出信号的失真。D类放大器的电路共分为三级:输入开关级、功率放大级以及输出滤波级。D类放大器工作在开关状态下可以采用脉宽调制(PWM)模式。利用PWM能将音频输入信号转换为高频开关信号,通过一个比较器将音频信号与高频三角波进行比较,当反相端电压高于同相端电压时,输出为低电平;当反相端电压低于同相端电压时,输出为高电平。
在D类放大器中,比较器的输出与功率放大电路相连,功放电路采用金属氧化物场效应管(MOSFET)替代双极型晶体管(BJT),这是由于前者具有更快的响应时间,因而适用于高频工作模式。D类放大器需要两只MOSFET,它们在非常短的时间内可完全工作在导通或截止状态下。当一只MOSFET完全导通时,其管压降很低;而当MOSFET完全截止时,通过管子的电流为零。两只MOSFET交替工作在导通和截止状态的开关速度非常快,因而效率极高,产生的热量很低,所以D类放大器不需要很大的散热器。
改善电路功率因数的意义是效益越好,发电设备越能充分利用。改善电路功率因数方法如下:
1)提高自然功率因数。自然功率因数是在没有任何补偿情况下,用电设备的功率因数。
提高自然功率因数的方法:合理选择异步电机;避免变压器空载运行;合理安排和调整工艺流程,改善机电设备的运行状况;在生产工艺允许条件下,采用同步电动机代替异步电动机。
(2)采用人工补偿无功功率。装用无功功率补偿设备进行人工补偿,电力用户常用的无功功率补偿设备是电力电容器。
提高功率因数的途径主要在于如何减少电力系统中各个部分所需的无功功率,特别是减少负荷取用的。
无功功率,使电力系统在输送一定的有功功率时,可降低其中通过的无功电流。
扩展资料
电网中的电力负荷如电动机、变压器、日光灯及电弧炉等,大多属于电感性负荷,这些电感性的设备在运行过程中不仅需要向电力系统吸收有功功率,还同时吸收无功功率。
因此在电网中安装并联电容器无功补偿设备后,将可以提供补偿感性负荷所消耗的无功功率,减少了电网电源侧向感性负荷提供及由线路输送的无功功率。
由于减少了无功功率在电网中的流动,因此可以降低输配电线路中变压器及母线因输送无功功率造成的电能损耗,这就是无功补偿的效益。
无功补偿的主要目的就是提升补偿系统的功率因数。因为供电局发出来的电是以kVA或者MVA来计算的,但是收费却是以kW,也就是实际所做的有用功来收费,两者之间有一个无效功率的差值,一般而言就是以kvar为单位的无功功率。
大部分的无效功都是电感性,也就是一般所谓的电动机、变压器、日光灯……,几乎所有的无效功都是电感性,电容性的非常少见,例如:变频器就是容性的,在变频器电源端加入电抗器可提高功率因数。
参考资料来源:百度百科-功率因数
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.911秒