解二元一次方程组的基本方法:消元法;换元法;设参数法;图像法;解向量法。
二元一次方程是指含有两个未知数(例如x和y),并且所含未知数的项的次数都是1的方程。两个结合在一起的共含有两个未知数的一次方程叫二元一次方程组。每个方程可化简为ax+by=c的形式。
一般地,使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。求方程组的解的过程,叫做解方程组。一般来说,一个二元一次方程有无数个解,而二元一次方程组的解有三种情况:唯一解;有无数组解;无解。
扩展资料:
二元一次方程:
1、定义
如果一个方程含有两个未知数,并且所含未知数的次数都为1,这样的整式方程叫做二元一次方程。
使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
2、一般形式
ax+by+c=O(a,b≠0)。
3、求解方法
利用数的整除特性结合代人排除的方法去求解。(可利用数的尾数特性,也可利用数的奇偶性。)
二元一次方程组:
1、定义
由两个一次方程组成,并含有两个未知数的方程组叫做二元一次方程组。
一般地,二元一次方程组的两个二元一次方程的公共解,叫做二元一次方程组的解。
2、一般形式(其中a1,a2,b1,b2不同时为零)
3、求解方法
消元法、换元法、设参数法、图像法、解向量法。
参考资料来源:搜狗百科——二元一次方程组
有高斯消元法 代换法
入消元法
(1)概念:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解. 这种解方程组的方法叫做代入消元法,简称代入法. (2)代入法解二元一次方程组的步骤 ①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数; ②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的. ); ③解这个一元一次方程,求出未知数的值; ④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值; ⑤用“{”联立两个未知数的值,就是方程组的解; ⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边).
加减消元法
(1)概念:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法. (2)加减法解二元一次方程组的步骤 ①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式; ②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法); ③解这个一元一次方程,求出未知数的值; ④将求得的未知数的值代入原方程组中的任何一个方程中,求出另一个未知数的值; ⑤用“{”联立两个未知数的值,就是方程组的解; ⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边).
二元二次方程组有两种类型.其一是由一个二元一次方程和一个二元二次方程组成的二元二次方程组;其二是由两个二元二次方程所组成的方程组.
没有具体的巧解办法
只能根据不同的题型采用不同的方法
第一类型:由一个二元一次方程和一个二元二次方程所组成的方程组,
a1x+b1y+c1=0 (1)
a2x^2+b2xy+c2y^2+d2x+e2y+f2=0 (2)
可用代入消元的方法转化为一元二次方程来解,这种形式的方程组一般有两组解。
第二类型:由两个二元二次方程组成的方程组
a1x^2+b1xy+c1y^2+d1x+e1y+f1=0
a2x^2+b2xy+c2y^2+d2x+e2y+f2=0
(1)如果一个二元二次方程的左边可以因式分解,则将这个方程因式分解,变为两个二元一次方程,再和另一个方程组成两个第一类型的方程组,再用代入消元,这种形式的方程组一般有四组解。
(2)如果是由一个一元二次方程和一个二元二次方程所组成的方程组,则可先解一元二次方程,再代入到另一个方程求解,这种形式的方程组一般有四组解。
(3)如果 a1:a2=b1:b2=c1:c2 则可采用消去二次项,变为第一类型可求解。
(4)如果 a1:a2=b1:b2=d1:d2 或 b1:b2=c1:c2=e1:e2 则可采用消元的方法变为第(2)种形式求解
解二元一次方程组的基本方法:消元法;换元法;设参数法;图像法;解向量法。
二元一次方程是指含有两个未知数(例如x和y),并且所含未知数的项的次数都是1的方程。两个结合在一起的共含有两个未知数的一次方程叫二元一次方程组。
每个方程可化简为ax+by=c的形式。一般地,使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。
求方程组的解的过程,叫做解方程组。一般来说,一个二元一次方程有无数个解,而二元一次方程组的解有三种情况:唯一解;有无数组解;无解。
扩展资料:二元一次方程:1、定义如果一个方程含有两个未知数,并且所含未知数的次数都为1,这样的整式方程叫做二元一次方程。使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
2、一般形式ax+by+c=O(a,b≠0)。3、求解方法利用数的整除特性结合代人排除的方法去求解。
(可利用数的尾数特性,也可利用数的奇偶性。)二元一次方程组:1、定义由两个一次方程组成,并含有两个未知数的方程组叫做二元一次方程组。
一般地,二元一次方程组的两个二元一次方程的公共解,叫做二元一次方程组的解。2、一般形式(其中a1,a2,b1,b2不同时为零)3、求解方法消元法、换元法、设参数法、图像法、解向量法。
参考资料来源:百度百科——二元一次方程组。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.829秒