(1)地层学方法(地层层序律:1669年,出生于哥本哈根的斯特诺(Nicolaus Steno,1638-1686)总结出在岩层之间,存在着如下的规律:岩层在形成后,如未受到强烈的地壳运动的影响而颠倒原来的位置,应该是先沉积的在下,后沉积的在上,一层压一层,保持近于水平的状态,延展到远处才渐渐尖灭。地层形成时是水平或近于水平的,先形成的位于下部,后形成的位于其上部.注意:原始产出的上新下老,并非现在野外见到的地层都是上新下老,其中又有后期地壳运的改造。对于后期地壳运动使地层变动(倾斜、倒转)的地层层序可用沉积构造中的层面构造(波痕、泥裂、有痕等)作为“示底构造”恢复顶底后,判断先后顺序。
(2)古生物学方法(化石层序律):生物演化是由简单到复杂,由低级到高级,生物种属由少到多,而且这种演化和发展是不可逆的。因而,各地质时期所具有的生物种属、类别是不相同的。时代越老,所具有的生物类别越少,生物越低级,构造越简单;时代越新,所具有的生物类别越多,生物越高级,构造越复杂。因此,在时代较老的岩石中保存的生物化石相对较低级,构造较简单;而在时代较新的岩石中保存的生物化石相对较高级,构造较复杂。
(3)构造地质学方法(切割律):上述两条准则主要适用于确定沉积岩或层状岩石的相对新老关系,但对于呈块状产出的岩浆岩或变质岩则难以运用,因为它们不成层,也不含化石。但是,这些块状岩石常常与层状岩石之间以及它们相互之间存在着相互穿插、切割的关系,这时,它们之间的新老关系依地质体之间的切割律来判定,即较新的地质体总是切割或穿插较老的地质,或者说切割者新、被切割者老。
相对地质年代的确定有三种方法:(1)地层学方法(地层层序律)、(2)古生物学方法(化石层序律)、(3)构造地质学方法(切割律)。
另一种为同位素地质年龄,即利用岩石中某些放射性元素的蜕变规律,以年为单位来测算岩石形成的年龄,也称绝对地质年代确认法。
第四纪气候与冰川活动的基本特点 :
1、以全球性变冷为最突出特征,表现为冰川作用的盛衰和气候带的移动,冰期和间冰期更替频繁。
2、第四季气候变化的主导因素是温度降低,温度下降的幅度誉与纬度和海拔高度相关。冰期时,高纬地区温度降低最大,中纬地带的气候比现在低8℃到12℃低纬地区最小。在相同纬度地区,大陆性气候区纬度下降值大,海洋性气候区下降值小。
3、冰期时,北半球有三个主要大陆冰盖中心: ①欧洲斯堪的纳维亚冰盖,向南延伸至47°N,冰层厚度1000米,分布面 积广。 ②格陵兰与北美冰盖,延伸到48°N,平均厚度达1000米,中心达3500 米。 ③ 西伯利亚冰盖,分布在北极圈附近,最南界60°N - 70°N。
4、第四纪气候呈现了波动式周期性变化,在没有受到冰期进退直接影响的中低 纬地区,呈现了雨期和间雨期的特点。
测定年代的方法,一般可分为两类,即绝对年代测定法和相对年代测定法。
(1)绝对年代测定法
绝对年代的测定,是根据沉积或火山岩在形成后其中化学元素自然放射性的衰变而计算的。沉积岩中的某些元素含有不稳定的同位素,在发生自然的放射性衰变时,它们的原子有规则地分解成为其他的元素,如钾40逐渐衰变成氩40,铀235衰变成铅207,碳14衰变成氮14等等。
衰变的速度不受外界因素如压力、温度或时间推移的影响。经过一定的时间,原先的原子只留下一半了。这个时间叫“半衰期”,放射的量也只有一半了。这留下的一半经过一定的时间,又去掉一半,只留下原先的1/4,再过一定的时间,再去掉一半,留下原先的1/8,如此等等。如果确定这块岩石样品中剩余的不稳定的同位素的量,再确定衰变产生的元素的量,得出它们的比例,这样根据已知的半衰期年代,便可计算出它的绝对年代。
这些间接的绝对年代测定的准确性,也有赖于标本与沉积年代的关系;如果年代测定还有赖于与其他沉积的相关,则其可靠性又差了一段。总之,绝对年代测定法虽然给人们一个年代的数目,但不要忘记,这只是一种估计,并不是准确数目。
(2)相对年代测定法
相对年代是使化石年代与其他东西的年代发生联系,如与其他化石、旧石器文化或地质事件相联系,从而来确定化石的年代。在不能使用绝对年代测定法时,使用相对年代测定法是很有用的。但是这种方法的准确性受到一系列因素的影响。
相对年代测定法主要是利用化石与它的沉积物的关系。当骨骼被埋藏时,它们逐渐吸收土壤中的某种元素。埋藏的时间越长,它们吸收得越多。比较各骨中这些化学物质的量,就可得知其相对的年代。如果人化石与其周围的动物化石埋藏时间是相同的,则两者中的各种元素的百分率会是一样的,如果人骨是埋藏在较晚的层位中,而后与较老的动物骨骼相混杂,则人骨内的各种元素的量会较少。最早用这种方法是分析骨中氟(Fluorine)的含量,例如在上世纪末和20世纪初时,初次用含氟量来判别在南斯拉夫克拉皮纳(Krapina)地点发现的人化石是否与该地点的绝灭动物群的骨骼是同时化的,从而确定了克拉皮纳人在尼人中的地位。其他常用的元素有氮和铀。这些化学测定法完全决定于当地的土壤条件,而不能用来比较不同的地点,即使是互相邻近的地点也不行。随着当地条件的变化,这种方法得出的结果有时不一致,或者根本不能应用。特别是人类化石,要考虑到在近10万年内埋葬的习俗逐渐风行起来。
相对年代的另一种测定方法,是确定出产化石的沉积,或者化石本身在当地的地层顺序、考古顺序或者动物进化顺序中的位置,从而测定其年代。
根据出产化石的地层与已知地层的特征相对比,从而确定化石的年代。例如,在东非肯尼亚特卡纳湖的一二百万年前的沉积中发现的人类化石的地层层位,可以用火山的凝灰岩而追踪其相互关系。又如欧洲的许多尼人的相对地位,可以用西欧当地的温度变化的序列、古土壤的成分以及其他受温度影响的地质现象来确定。
用考古器物的文化顺序,来测定年代是有很大困难的。人类技术的进步,更多是增加新的工具,而不是抛弃旧的。现代人还有用很原始的石器工具的。如果单从极简单的工具来判断,则可能会把晚的东西弄得很早。可是如果发现一把铁斧,则此地点肯定是相当晚的。所以,只能从最先进的工具来确定一个地点在当地文化顺序中的地位。
地质年代可分为相对年代和绝对年龄(或同位素年龄)两种。
相对地质年代 相对地质年代是指岩石和地层之间的相对新老关系和它们的时代顺序。地质学家和古生物学家根据地层自然形成的先后顺序,将地层分为5代12纪。
即早期的太古代和元古代(元古代在中国含有1个震旦纪),以后的古生代、中生代和新生代。古生代分为寒武纪、奥陶纪、志留纪、泥盆纪、石炭纪和二叠纪,共7个纪;中生代分为三叠纪、侏罗纪和白垩纪,共3个纪;新生代只有第三纪、第四纪两个纪。
在各个不同时期的地层里,大都保存有古代动、植物的标准化石。各类动、植物化石出现的早晚是有一定顺序的,越是低等的,出现得越早,越是高等的,出现得越晚。
绝对年龄是根据测出岩石中某种放射性元素及其蜕变产物的含量而计算出岩石的生成后距今的实际年数。越是老的岩石,地层距今的年数越长。
每个地质年代单位应为开始于距今多少年前,结束于距今多少年前,这样便可计算出共延续多少年。例如,中生代始于距今2.3亿年前,止于6700万年前,延续1.7亿年.下页包括生物进化地质年代表 大家知道按地层的年龄将地球的年龄划分成一些单位,这样可便于我们进行地球和生命演化的表述。
人们习惯于以生物的情况来划分,这样就把整个46亿年划成两个大的单元,那些看不到或者很难见到生物的时代被称做隐生宙,而将可看到一定量生命以后的时代称做是显生宙。隐生宙的上限为地球的起源,其下限年代却不是一个绝对准确的数字,一般说来可推至6亿年前,也有推至5.7亿年前的。
从6亿或5.7亿年以后到现在就被称做是显生宙。绝对地质年代 绝对地质年代是指通过对岩石中放射性同位素含量的测定,根据其衰变规律而计算出该岩石的年龄。
绝对地质年代是以绝对的天文单位“年”来表达地质时间的方法,绝对地质年代学可以用来确定地质事件发生、延续和结束的时间。 在人类找到合适的定年方法之前,对地球的年龄和地质事件发生的时间更多含有估计的成分。
诸如采用季节-气候法、沉积法、古生物法、海水含盐度法等,利用这些方法不同的学者会得到的不同的结果,和地球的实际年龄也有很大差别。目前较常见也较准确的测年方法是放射性同位素法。
其中主要有U-Pb法、钾-氩法、氩-氩法、Rb-Sr法、Sm-Nd法、碳法、裂变径迹法等,根据所测定地质体的情况和放射性同位素的不同半衰期选用合适的方法可以获得比较理想的结果。 利用放射性同位素所获得的地球上最大的岩石年龄为45亿年,月岩年龄46-47亿年,陨石年龄在46-47亿年之间。
因此,地球的年龄应在46亿年以上。 宙下被划分为一些代。
通常的分法大致有:太古代、元古代、古生代、中生代、新生代五个代。太古代一般指的是地球形成及化学进化这个时期,可以是从46亿年前到38亿年前或34亿年前,这个数字之所以有数以亿计的年数之差是因为我们目前所能掌握的最古老的生命或生命痕迹还有许多的不确定因素。
元古代紧接在太古代之后,其下限一般定在前寒武纪生命大爆发之前,这个时期目前在5.7亿到6亿年前。太古代和元古代这两个名称是1863由美国人洛冈命名的,他命名的意思是指生物界太古老和生物界次古老。
自寒武纪后到2.3亿年前这段时间为古生代,这个名称由英国人赛德维克制定,他依照洛冈取了生物界古老的意思,此事发生在1838年。从2.3亿年前到0.65亿年前为中生代,从0.65亿年后到现在为新生代。
这两个代均由英国人费利普斯于1841年命名,取意分别为生物界中等古老和生物界接近现代。 代以下的划分单元为纪。
让我们从最古老的纪开始吧。最古老的纪叫长城纪,然后是蕲县纪、青白口纪、震旦纪。
震旦纪,由美籍人葛利普于1922年在中国命名,葛氏当时活动在浙、皖一带,他按照古代印度人称呼中国为日出之地而取了这个名称。起于18或19亿年前,止于5.7亿年前。
这个时期的生命主要是细菌和蓝藻,后期开始出现真核藻类和无脊椎动物。 1936年赛德维克在英国西部的威尔士一带进行研究,在罗马人统治的时代,北威尔士山曾称寒武山,因此赛德维克便将这个个时期称为寒武纪。
33年以后,另一位英国地质学家拉普华兹在同一地区发现一个地层,这个与较早发现的志留纪与寒武纪相比有着诸多不同的地方,它介入上述两个层之间,显然是属于一个不同的有代表性的时期,因此他根据一个古代在此居住过的民族名将这个时期称为奥陶纪。志留纪的名称的产生比寒武纪和奥陶纪都要早,大约是在1835年,莫企孙也是在英国西部一带进行研究,名称的意思来源于另一个威尔士古代当地民族的名称。
莫氏和赛德维克于1839年在德文郡(Devonshire)将一套海成岩石层按地名进行了命名,中文翻译为“泥盆”。石炭这个名称的出现可能是最早的,1822年康尼比尔和费利普斯在研究英国地质时,发现了一套稳定的含煤炭地层,这是在一个非常壮观的造煤时期形成的,因此因煤炭而得名。
二叠纪这个名称是我国科学家按形象而翻译的,最初命名时是在1841年,由莫企孙根据当地所处彼尔姆州(俄乌拉尔山乌法高原)将其命名为彼尔姆纪。后来在德国发现这个时期的地层明显为上是白云质灰岩下。
1、相对年代的确定方法
(1)地层学方法(地层层序律:1669年,出生于哥本哈根的斯特诺(Nicolaus Steno,1638-1686)总结出在岩层之间,存在着如下的规律:岩层在形成后,如未受到强烈的地壳运动的影响而颠倒原来的位置,应该是先沉积的在下,后沉积的在上,一层压一层,保持近于水平的状态,延展到远处才渐渐尖灭.地层形成时是水平或近于水平的,先形成的位于下部,后形成的位于其上部.注意:原始产出的上新下老,并非现在野外见到的地层都是上新下老,其中又有后期地壳运的改造.对于后期地壳运动使地层变动(倾斜、倒转)的地层层序可用沉积构造中的层面构造(波痕、泥裂、有痕等)作为“示底构造”恢复顶底后,判断先后顺序.
(2)古生物学方法(化石层序律):生物演化是由简单到复杂,由低级到高级,生物种属由少到多,而且这种演化和发展是不可逆的.因而,各地质时期所具有的生物种属、类别是不相同的.时代越老,所具有的生物类别越少,生物越低级,构造越简单;时代越新,所具有的生物类别越多,生物越高级,构造越复杂.因此,在时代较老的岩石中保存的生物化石相对较低级,构造较简单;而在时代较新的岩石中保存的生物化石相对较高级,构造较复杂.
(3)构造地质学方法(切割律):上述两条准则主要适用于确定沉积岩或层状岩石的相对新老关系,但对于呈块状产出的岩浆岩或变质岩则难以运用,因为它们不成层,也不含化石.但是,这些块状岩石常常与层状岩石之间以及它们相互之间存在着相互穿插、切割的关系,这时,它们之间的新老关系依地质体之间的切割律来判定,即较新的地质体总是切割或穿插较老的地质,或者说切割者新、被切割者老.
2、同位素年龄(绝对年龄)的测定
(1)铷-锶法、铀(钍)-铅法:主要用于测定较古老岩石的年龄;
(2)钾-氩法:有效范围大,几乎可以适用于绝大部分地质时间,而且钾是常见元素,许多矿物中都富含钾,因而使钾-氩法的测定难度降低、精确度提高,所以钾-氩法应用最为广泛;
(3)14C法:由于其同位素半衰期短,它一般只适用于5万年以来的年龄测定;
(4)钐-钕法、40Ar-39Ar法:精度高,分辨率强.
1.地层层序律
地层是在一定地质时期内所形成的层状岩石(含沉积物),包括沉积岩、火山岩和由沉积岩及火山岩变质而成的变质岩,是具有一定时代含义的岩层或岩层的组合。
沉积岩地层是在漫长的地质时期中逐渐形成的,其形成时是水平的或近于水平的,如果沉积过程中没有干扰因素,原始的沉积地层一定是连续的,自下而上逐层叠置起来的(图17-1、图17-A)。在正常层序情况下,先形成的岩层在下,后形成的岩层在上,上覆岩层比下伏岩层为新,即下老上新,这就是地层层序律(N.Steno,1669)。它是确定地层相对地质年代的基本方法之一,由此可以确定沉积事件的先后顺序(图17-2)。
如果地层受到后期构造运动的影响,原始水平或近水平的岩层就会发生倾斜甚至变为直立或倒转,这时倾斜面以上的岩层新,倾斜面以下的岩层老(图17-2B)。如果岩层发生褶皱倒转,则老岩层就掩覆在新岩层之上。如图17-3所示,剖面右侧为正常层序,剖面左侧为倒转层序。因此在实际工作中,利用地层层序律确定地层形成的先后顺序时,首先要鉴别地层层序是否正常。一般是利用沉积岩的沉积构造(泥裂、波痕、雨痕、交错层等),来判断岩层的顶面和底面,恢复其原始层序,以确定其相对的新老关系。
图17-1 原始水平沉积地层
图17-2 地层相对年代的确定
(据夏邦栋,1995)
A—水平岩层;B—倾斜岩层;1~4代表由老到新的岩层
图17-3 四川江油黄连桥地区中上三叠统地层剖面图
(转引自傅英棋、杨季楷,1987)
T2t—中三叠统天井山组;T3h—上三叠统汉旺组;T3s—上三叠统石元组
2.化石层序律(生物层序律)
由自然作用保存在地层中的地史时期的生物遗体和遗迹,称为化石。化石的形成一般是由具备硬体的生物遗体被地下水中的矿物质逐步而缓慢地交代或充填作用的结果,有的是生物遗体中所含不稳定成分挥发逸去,留下其中炭质薄膜的结果。所以生物遗体的成分通常已变成矿物质,但化石的形态和内部构造仍保持着原来生物骨骼或介壳等硬体部分的特征。
生物的演变是从简单到复杂、从低级到高级不断发展的。因此,一般说来,年代越老的地层中所含生物越原始、越简单、越低级;年代越新的地层中所含生物越进步、越复杂、越高级,并且具有不可逆性。因此,不同时期的地层中含有不同类型的化石及其组合,而在相同时期且在相同地理环境下所形成的地层,只要原先的海洋或陆地相通,都含有相同的化石及其组合,这就是化石层序律。
早在达尔文之前,英国的工程师威廉·史密斯(W.Smith,1769~1839年)就发现,可以根据化石是否相同来对比不同地区的岩层是否属于同一时代。这一方法至今仍然是确定沉积岩年代的主要方法之一。如图17-4表示根据地层层序和岩性特征、化石特征来划分对比甲、乙、丙三地区的地层,从而恢复该三地区完整的地层形成顺序,并以综合地层柱状图表示。
图17-4 地层划分与对比及综合地层柱状图
(据夏邦栋,1995)
并不是所有的化石都能用来划分对比地层。因为有的生物适应环境变化的能力很强,在很长的时间中,它们的特征没有显著改变,这类生物的化石对划分和对比岩层的意义不大。只有那些时代分布短、特征显著、数量众多、分布广泛的化石才用于确定地层地质年代。这种化石称为标准化石。
3.切割律或穿插关系
确定相对地质年代的方法除了利用沉积地层学和生物地层学方法外,还可以用地质体在空间上的接触关系、捕虏体的存在等来确定地质时间发生的先后顺序。不同时代的岩层、岩体由于各种地质作用,常相互切割或呈穿插关系。在此情况下,被切割或被穿插的岩层比切割或穿插的岩层老,这就是切割律(图17-5)。
图17-5 岩石形成顺序示意图
(据夏邦栋,1995)
由早到晚:1—石灰岩;2—花岗岩;3—矽卡岩;4—闪长岩;5—辉绿岩;6—砾岩
地质年代可分为相对年代和绝对年龄(或同位素年龄)两种。
相对地质年代 相对地质年代是指岩石和地层之间的相对新老关系和它们的时代顺序。地质学家和古生物学家根据地层自然形成的先后顺序,将地层分为5代12纪。
即早期的太古代和元古代(元古代在中国含有1个震旦纪),以后的古生代、中生代和新生代。古生代分为寒武纪、奥陶纪、志留纪、泥盆纪、石炭纪和二叠纪,共7个纪;中生代分为三叠纪、侏罗纪和白垩纪,共3个纪;新生代只有第三纪、第四纪两个纪。
在各个不同时期的地层里,大都保存有古代动、植物的标准化石。各类动、植物化石出现的早晚是有一定顺序的,越是低等的,出现得越早,越是高等的,出现得越晚。
绝对年龄是根据测出岩石中某种放射性元素及其蜕变产物的含量而计算出岩石的生成后距今的实际年数。越是老的岩石,地层距今的年数越长。
每个地质年代单位应为开始于距今多少年前,结束于距今多少年前,这样便可计算出共延续多少年。例如,中生代始于距今2.3亿年前,止于6700万年前,延续1.7亿年.下页包括生物进化地质年代表 大家知道按地层的年龄将地球的年龄划分成一些单位,这样可便于我们进行地球和生命演化的表述。
人们习惯于以生物的情况来划分,这样就把整个46亿年划成两个大的单元,那些看不到或者很难见到生物的时代被称做隐生宙,而将可看到一定量生命以后的时代称做是显生宙。隐生宙的上限为地球的起源,其下限年代却不是一个绝对准确的数字,一般说来可推至6亿年前,也有推至5.7亿年前的。
从6亿或5.7亿年以后到现在就被称做是显生宙。绝对地质年代 绝对地质年代是指通过对岩石中放射性同位素含量的测定,根据其衰变规律而计算出该岩石的年龄。
绝对地质年代是以绝对的天文单位“年”来表达地质时间的方法,绝对地质年代学可以用来确定地质事件发生、延续和结束的时间。 在人类找到合适的定年方法之前,对地球的年龄和地质事件发生的时间更多含有估计的成分。
诸如采用季节-气候法、沉积法、古生物法、海水含盐度法等,利用这些方法不同的学者会得到的不同的结果,和地球的实际年龄也有很大差别。目前较常见也较准确的测年方法是放射性同位素法。
其中主要有U-Pb法、钾-氩法、氩-氩法、Rb-Sr法、Sm-Nd法、碳法、裂变径迹法等,根据所测定地质体的情况和放射性同位素的不同半衰期选用合适的方法可以获得比较理想的结果。 利用放射性同位素所获得的地球上最大的岩石年龄为45亿年,月岩年龄46-47亿年,陨石年龄在46-47亿年之间。
因此,地球的年龄应在46亿年以上。 宙下被划分为一些代。
通常的分法大致有:太古代、元古代、古生代、中生代、新生代五个代。太古代一般指的是地球形成及化学进化这个时期,可以是从46亿年前到38亿年前或34亿年前,这个数字之所以有数以亿计的年数之差是因为我们目前所能掌握的最古老的生命或生命痕迹还有许多的不确定因素。
元古代紧接在太古代之后,其下限一般定在前寒武纪生命大爆发之前,这个时期目前在5.7亿到6亿年前。太古代和元古代这两个名称是1863由美国人洛冈命名的,他命名的意思是指生物界太古老和生物界次古老。
自寒武纪后到2.3亿年前这段时间为古生代,这个名称由英国人赛德维克制定,他依照洛冈取了生物界古老的意思,此事发生在1838年。从2.3亿年前到0.65亿年前为中生代,从0.65亿年后到现在为新生代。
这两个代均由英国人费利普斯于1841年命名,取意分别为生物界中等古老和生物界接近现代。 代以下的划分单元为纪。
让我们从最古老的纪开始吧。最古老的纪叫长城纪,然后是蕲县纪、青白口纪、震旦纪。
震旦纪,由美籍人葛利普于1922年在中国命名,葛氏当时活动在浙、皖一带,他按照古代印度人称呼中国为日出之地而取了这个名称。起于18或19亿年前,止于5.7亿年前。
这个时期的生命主要是细菌和蓝藻,后期开始出现真核藻类和无脊椎动物。 1936年赛德维克在英国西部的威尔士一带进行研究,在罗马人统治的时代,北威尔士山曾称寒武山,因此赛德维克便将这个个时期称为寒武纪。
33年以后,另一位英国地质学家拉普华兹在同一地区发现一个地层,这个与较早发现的志留纪与寒武纪相比有着诸多不同的地方,它介入上述两个层之间,显然是属于一个不同的有代表性的时期,因此他根据一个古代在此居住过的民族名将这个时期称为奥陶纪。志留纪的名称的产生比寒武纪和奥陶纪都要早,大约是在1835年,莫企孙也是在英国西部一带进行研究,名称的意思来源于另一个威尔士古代当地民族的名称。
莫氏和赛德维克于1839年在德文郡(Devonshire)将一套海成岩石层按地名进行了命名,中文翻译为“泥盆”。石炭这个名称的出现可能是最早的,1822年康尼比尔和费利普斯在研究英国地质时,发现了一套稳定的含煤炭地层,这是在一个非常壮观的造煤时期形成的,因此因煤炭而得名。
二叠纪这个名称是我国科学家按形象而翻译的,最初命名时是在1841年,由莫企孙根据当地所处彼尔姆州(俄乌拉尔山乌法高原)将其命名为彼尔姆纪。后来在德国发现这个时期的地层明显为上是白云质灰岩下。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.580秒