几何图形有:正方形、长方形、三角形、四边形、平行四边形、菱形、梯形、圆、扇形、弓形、圆环、立方体、长方体、圆柱、圆台、棱柱、棱台、圆锥、棱锥。
1、正方形 四条边都相等、四个角都是直角的四边形是正方形。正方形的两组对边分别平行,四条边都相等;四个角都是90°;对角线互相垂直、平分且相等,每条对角线都平分一组对角。
2、三角形 常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。 3、圆 圆是一种几何图形。
根据定义,通常用圆规来画圆。 同圆内圆的直径、半径长度永远相同,圆有无数条半径和无数条直径。
圆是轴对称、中心对称图形。 对称轴是直径所在的直线。
同时,圆又是“正无限多边形”,而“无限”只是一个概念。当多边形的边数越多时,其形状、周长、面积就都越接近于圆。
所以,世界上没有真正的圆,圆实际上只是概念性的图形。 4、立方体 立方体,也称正方体,是由6个正方形面组成的正多面体,故又称正六面体。
它有12条边和8个顶点。其中正方体是特殊的长方体。
5、棱柱 棱柱是几何学中的一种常见的三维多面体,指两个平行的平面被三个或以上的平面所垂直截得的封闭几何体。 若用于截平行平面的平面数为n,那么该棱柱便称为n-棱柱。
如三棱柱就是由两个平行的平面被三个平面所垂直截得的封闭几何体。
释文:一、2113 广义的图像运算是5261对图像进行的处理操作。
二、狭义图像运4102算专指图像的代数1653运算(或算术运算)、逻辑运算和数学形态学运算。数字图像处理与机器视觉数字图像处理中根遍历图像的几何变换图像的二值化图像的梯度图像的矩图像映射二值图像与灰度图像的区别图像几何变换图像运算 释文:一、广义的图像运算是对图像进行的处理操作。
二、狭义图像运算专指图像的代数运算(或算术运算)、逻辑运算和数学形态学运算。分类:一、按涉及的波段,图像运算可分为:①单波段运算; ②多波段运算。
二、按运算所涉及的像元范围,图像运算可分为:①点运算; ②邻域运算或局部运算; ③几何运算; ④全局运算等。三、按计算方法与像元位置的关系可分为:①位置不变运算; ②位置可变或位移可变运算。
四、按运算执行的顺序,又可分为①顺序运算; ②迭代运算; ③跟踪运算等。
一、正方形:
1. 正方形的周长=边长*4
2. 正方形的面积=边长*边长
3. 正方形的边长=面积÷边长
4. 正方形的边长=周长÷4
二、长方形:
1.长方形的周长=(长+宽)*2
2.长方形的面积=长*宽
3.长方形的宽=周长÷2—长
4.长方形的长=周长÷2—宽
三、平行四边形:
1.平行四边形的面积 =底*高
2.平行四边形的底=面积÷高
3.平行四边形的高=面积÷底
四、三角形:
1.三角形的面积=底*高÷2
2.三角形的底=面积*2÷高
3.三角形的高=面积*2÷底
五、梯形
1.梯形的面积=(上底+下底)*高÷2
2.梯形的高=面积*2—上底—下底
3.梯形的上底和下底=面积*2÷高
4.梯形的上底=面积*2÷高—下底
5.梯形的下底=面积*2÷高—上底
六、圆形:
1.圆的面积=圆周率*半径的平方
2.圆的周长=圆周率*直径
3.直径=半径*2
4.半径=直径÷2
5.半径的平方=圆面积÷圆周率
6.直径=周长÷圆周率
7.圆的周长=2*圆周率*半径
8.圆周率=3.1415926~3.1415927之间
七、长方体:
1.长方体的体积=长*宽*高
2.长方体的表面积=(长*宽)+(长*宽)+(宽*高)*2
3.长方体的宽=体积÷长÷高
八、正方体:
1.正方体的体积=棱长*棱长*棱长
2.正方体的表面积=棱长*6
九、圆柱、圆锥:
1.圆柱的体积=底面积*高,圆锥的体积为=1/3*底面积*高
2.圆柱的表面积=两个底面积+一个侧面积
3.圆柱的侧面积=底面周长*高
常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。
一 颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。
由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。
颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。(二)常用的特征提取与匹配方法 (1) 颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。
其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。最常用的颜色空间:RGB颜色空间、HSV颜色空间。
颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。(2) 颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。
颜色集是对颜色直方图的一种近似首先将图像从 RGB颜色空间转化成视觉均衡的颜色空间(如 HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。
在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3) 颜色矩 这种方法的数学基础在于:图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(mean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。
(4) 颜色聚合向量 其核心思想是:将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。(5) 颜色相关图 二 纹理特征 (一)特点:纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。
但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。
在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局部的偏差而无法匹配成功。作为一种统计特征,纹理特征常具有旋转不变性,并且对于噪声有较强的抵抗能力。
但是,纹理特征也有其缺点,一个很明显的缺点是当图像的分辨率变化的时候,所计算出来的纹理可能会有较大偏差。另外,由于有可能受到光照、反射情况的影响,从2-D图像中反映出来的纹理不一定是3-D物体表面真实的纹理。
例如,水中的倒影,光滑的金属面互相反射造成的影响等都会导致纹理的变化。由于这些不是物体本身的特性,因而将纹理信息应用于检索时,有时这些虚假的纹理会对检索造成“误导”。
在检索具有粗细、疏密等方面较大差别的纹理图像时,利用纹理特征是一种有效的方法。但当纹理之间的粗细、疏密等易于分辨的信息之间相差不大的时候,通常的纹理特征很难准确地反映出人的视觉感觉不同的纹理之间的差别。
(二)常用的特征提取与匹配方法 纹理特征描述方法分类 (1)统计方法统计方法的典型代表是一种称为灰度共生矩阵的纹理特征分析方法Gotlieb 和 Kreyszig 等人在研究共生矩阵中各种统计特征基础上,通过实验,得出灰度共生矩阵的四个关键特征:能量、惯量、熵和相关性。统计方法中另一种典型方法,则是从图像的自相关函数(即图像的能量谱函数)提取纹理特征,即通过对图像的能量谱函数的计算,提取纹理的粗细度及方向性等特征参数 (2)几何法 所谓几何法,是建立在纹理基元(基本的纹理元素)理论基础上的一种纹理特征分析方法。
纹理基元理论认为,复杂的纹理可以由若干简单的纹理基元以一定的有规律的形式重复排列构成。在几何法中,比较有影响的算法有两种:Voronio 棋盘格特征法和结构法。
(3)模型法 模型法以图像的构造模型为基础,采用模型的参数作为纹理特征。典型的方法是随机场模型法,如马尔可夫(Markov)随机场(MRF)模型法和 Gibbs 随机场模型法 (4)信号处理法 纹理特征的提取与匹配主要有:灰度共生矩阵、Tamura 纹理特征、自回归纹理模型、小波变换等。
灰度共生矩阵特征提取与匹配主要依赖于能量、惯量、熵和相关性四个参数。Tamura 纹理特征基于人类对纹理的视觉感知心理学研究,提出6种属性,即:粗糙度、对比度、方向度、线像度、规整度和粗略度。
自回归纹理模型(simultaneous auto-regressive, SAR)是马尔可夫随机场(MRF)模型的一种。
名称 符号 周长C和面积S 正方形 a—边长 C=4a S=a2 长方形 a和b-边长 C=2(a+b) S=ab 三角形 a,b,c-三边长 h-a边上的高 s-周长的一半 A,B,C-内角 其中s=(a+b+c)/2 S=ah/2 =ab/2·sinC =[s(s-a)(s-b)(s-c)]1/2 =a2sinBsinC/(2sinA) 四边形 d,D-对角线长 α-对角线夹角 S=dD/2·sinα 平行四边形 a,b-边长 h-a边的高 α-两边夹角 S=ah =absinα 菱形 a-边长 α-夹角 D-长对角线长 d-短对角线长 S=Dd/2 =a2sinα 梯形 a和b-上、下底长 h-高 m-中位线长 S=(a+b)h/2 =mh 圆 r-半径 d-直径 C=πd=2πr S=πr2 =πd2/4 扇形 r—扇形半径 a—圆心角度数 C=2r+2πr*(a/360) S=πr2*(a/360) 弓形 l-弧长 b-弦长 h-矢高 r-半径 α-圆心角的度数 S=r2/2·(πα/180-sinα) =r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2 =παr2/360 - b/2·[r2-(b/2)2]1/2 =r(l-b)/2 + bh/2 ≈2bh/3 圆环 R-外圆半径 r-内圆半径 D-外圆直径 d-内圆直径 S=π(R2-r2) =π(D2-d2)/4 椭圆 D-长轴 d-短轴 S=πDd/4 立方图形 名称 符号 面积S和体积V 正方体 a-边长 S=6a2 V=a3 长方体 a-长 b-宽 c-高 S=2(ab+ac+bc) V=abc 棱柱 S-底面积 h-高 V=Sh 棱锥 S-底面积 h-高 V=Sh/3 棱台 S1和S2-上、下底面积 h-高 V=h[S1+S2+(S1S1)1/2]/3 拟柱体 S1-上底面积 S2-下底面积 S0-中截面积 h-高 V=h(S1+S2+4S0)/6 圆柱 r-底半径 h-高 C—底面周长 S底—底面积 S侧—侧面积 S表—表面积 C=2πr S底=πr2 S侧=Ch S表=Ch+2S底 V=S底h =πr2h 空心圆柱 R-外圆半径 r-内圆半径 h-高 V=πh(R2-r2) 直圆锥 r-底半径 h-高 V=πr2h/3 圆台 r-上底半径 R-下底半径 h-高 V=πh(R2+Rr+r2)/3 球 r-半径 d-直径 V=4/3πr3=πd2/6 球缺 h-球缺高 r-球半径 a-球缺底半径 V=πh(3a2+h2)/6 =πh2(3r-h)/3 a2=h(2r-h) 球台 r1和r2-球台上、下底半径 h-高 V=πh[3(r12+r22)+h2]/6 圆环体 R-环体半径 D-环体直径 r-环体截面半径 d-环体截面直径 V=2π2Rr2 =π2Dd2/4 桶状体 D-桶腹直径 d-桶底直径 h-桶高 V=πh(2D2+d2)/12 (母线是圆弧形,圆心是桶的中心) V=πh(2D2+Dd+3d2/4)/15 (母线是抛物线形)。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:4.010秒