等数学在复习过程中考生们要注意以下几点:
第一:要明确考试重点,充分把握重点。
比如高数第一章的不定式的极限,我们要充分把握求不定式极限的各种方法,比如利用极限的四则运算、利用洛必达法则等等,另外两个重要的极限也是重点内容;对函数的连续性的探讨也是考试的重点,这要求我们需要充分理解函数连续的定义和掌握判定连续性的方法。
第二:关于导数和微分
其实考试的重点并不是给一个函数求其导数,而是导数的定义,也就是抽象函数的可导性。还要熟练掌握各类多元函数求偏导的方法以及极值与最值的求解与应用问题。
第三:关于积分部分
定积分、分段函数的积分、带绝对值的函数的积分等各种积分的求法都是重要的题型。而且求积分的过程中,特别要留意积分的对称性,利用分段积分去掉绝对值把积分求出来。二重积分的计算,当然数学一里面还包括了三重积分,这里面每年都要考一个题目。另外曲线和曲面积分,这也是必考的重点内容。
第四:微分方程,还有无穷级数,无穷级数的求和等
这两部分内容相对比较孤立,也是难点,需要记忆的公式、定理比较多。微分方程中需要熟练掌握变量可分离的方程、齐次微分方程和一阶线性微分方程的求解方法,以及二阶常系数线性微分方程的求解,对于这些方程要能够判断方程类型,利用对应的求解方法,求解公式,能很快的求解。对于无穷级数,要会判断级数的敛散性,重点掌握幂级数的收敛半径与收敛域的求解,以及求数项级数的和与幂级数的和函数等。
应该有考纲吧?比如2011山东专升本高等数学考试大纲: 总要求:考生应了解或理解“高等数学”中函数、极限和连续、一元函数微分学、一元函数积分学、向量代数与空间解析几何、多元函数微积分学、无穷级数、常微分方程的基本概念与基本理论;学会、掌握或熟练掌握上述各部分的基本方法。
应注意各部分知识的结构及知识的内在联系;应具有一定的抽象思维能力、逻辑推理能力、运算能力、空间想象能力;有运用基本概念、基本理论和基本方法正确地推理证明,准确地计算;能综合运用所学知识分析并解决简单的实际问题。 一、函数、极限和连续 (一)函数 (1)理解函数的概念:函数的定义,函数的表示法,分段函数。
(2)理解和掌握函数的简单性质:单调性,奇偶性,有界性,周期性。 (3)了解反函数:反函数的定义,反函数的图象。
(4)掌握函数的四则运算与复合运算。 (5)理解和掌握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。
(6)了解初等函数的概念。 (二)极限 (1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。 (2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,掌握极限的四则运算法则。
(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→ ∞,x→-∞)时函数的极限。 (4)掌握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。
(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。 (6)熟练掌握用两个重要极限求极限的方法。
(三)连续 (1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的间断点及其分类。 (2)掌握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的间断点及确定其类型。
(3)掌握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。 (4)理解初等函数在其定义区间上连续,并会利用连续性求极限。
二、一元函数微分学 (一)导数与微分 (1)理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数。 (2)会求曲线上一点处的切线方程与法线方程。
(3)熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法。 (4)掌握隐函数的求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。
(5)理解高阶导数的概念,会求简单函数的n阶导数。 (6)理解函数的微分概念,掌握微分法则,了解可微与可导的关系,会求函数的一阶微分。
(二)中值定理及导数的应用 (1)了解罗尔中值定理、拉格朗日中值定理及它们的几何意义。 (2)熟练掌握洛必达法则求“0/0”、“∞/ ∞”、“0•∞”、“∞-∞”、“1∞”、“00”和“∞0”型未定式的极限方法。
(3)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的增减性证明简单的不等式。 (4)理解函数极值的概念,掌握求函数的极值和最大(小)值的方法,并且会解简单的应用问题。
(5)会判定曲线的凹凸性,会求曲线的拐点。 (6)会求曲线的水平渐近线与垂直渐近线。
三、一元函数积分学 (一)不定积分 (1)理解原函数与不定积分概念及其关系,掌握不定积分性质,了解原函数存在定理。 (2)熟练掌握不定积分的基本公式。
(3)熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换)。 (4)熟练掌握不定积分的分部积分法。
(二)定积分 (1)理解定积分的概念与几何意义,了解可积的条件。 (2)掌握定积分的基本性质。
(3)理解变上限的定积分是变上限的函数,掌握变上限定积分求导数的方法。 (4)掌握牛顿—莱布尼茨公式。
(5)掌握定积分的换元积分法与分部积分法。 (6)理解无穷区间广义积分的概念,掌握其计算方法。
(7)掌握直角坐标系下用定积分计算平面图形的面积。 四、向量代数与空间解析几何 (一)向量代数 (1)理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影。
(2)掌握向量的线性运算、向量的数量积与向量积的计算方法。 (3)掌握二向量平行、垂直的条件。
(二)平面与直线 (1)会求平面的点法式方程、一般式方程。会判定两平面的垂直、平行。
(2)会求点到平面的距离。 (3)了解直线的一般式方程,会求直线的标准式方程、参数式方程。
会判定两直线平行、垂直。 (4)会判定直线与平面间的关系(垂直、平行、直线在平面上)。
五、多元函数微积分 (一)多元函数微分学 (1)了解多元函数的概念、二元函数的几何意义及二元函数的极值与连续概念(对计算不作要求)。会求二元函数的定义域。
(2)理解偏导数、全微分概念,知道全微分存在的必要条件与充分条件。 。
1、函数、极限与连续
2、导数与微分
3、中值定理与导数应用
4、原函数与不定积分概念,不定积分换元法,不定积分分部积分法
5、定积分及其应用
6、微分方程
7、空间解析几何向量代数
8、多元函数微分学
9、多元函数积分学
10、无穷级数
扩展资料:
专升本的考试科目:
1、文史类:政治、英语、大学语文。
2、艺术类:政治、英语、艺术概论。
3、理工类:政治、英语、高等数学(一)。
4、经济管理类:政治、英语、高等数学(二)。
5、法学类:政治、英语、民法。
6、教育学类:政治、英语、教育理论。
7、农学类:政治、英语、生态学基础。
8、医学类:政治、英语、医学综合。
参考资料来源:搜狗百科-专升本考试
参考资料来源:搜狗百科-网络教育专升本考试辅导·高等数学
高等数学考试范围
一。数、极限、连续
1.主要内容:函数的概念、复合函数的概念、基本初等函数的性质及图像、极限的概念及四则运算、函数极限的性质、两个重要极限、极限存在准则(夹逼准则和单调有界准则)、无穷小的比较、函数连的概念、间断点及基本类型、闭区间上连续函数的性质(最大值、最小值、零点、介值定理)。
2.重点:函数的概念、复合函数的概念、基本函数的概念、基本初等函数的性质及图像、极限的概念及四则运算、求函数极限、连续的概念性质及应用。
3.难点:极限的∑-N、∑-δ定义,等价无穷小求极限。
二。函数微分学
1主要内容:导数与微分的概念,导数与微分的概念,导数的几何意义,函数求导与连续的关系,导数的四则运算及求法(复数函数求导,隐函数求导,参数式求导及求高阶求导)。罗尔、拉格朗日、柯西中值定理、函数中值定理的概念,用导数判断函数的单调性及单调区间,求极值、拐点、判断凸凹性,弧微分及曲率。
2重点:导数与微分的概念,导数的几何意义及应用,导数的四则运算及求法,罗尔和拉格朗日中值定理及应用,导数判断函数的单调性,导数求函数的极性、最值、拐点及判断其凹凸性。
3难点:求导数及用导数研究函数的性态。引力)牛顿,隐函数求导,平面位置关系的判定,单位向量、拐点及判断其凹凸性。
2难点。
3难点、点到平面的距离:求导数及用导数研究函数的性态,几种曲面(椭球面,导数的几何意义及应用、求函数极限。
2难点、叉乘、隐函数求导及高阶偏导、法平面。一元函数积分学
1主要内容及重点:向量代数与空间解析几何
1主要内容.难点,不定积分的基本公式(22个)。
2重点、无穷小的比较:空间直角坐标系。
三:广义积分定积分的应用、∑-δ定义,一阶偏导数的求法(复合函数、直线的位置关系解决有关的问题,导数判断函数的单调性,等价无穷小求极限、双曲面?莱布尼茨公式、基本初等函数的性质及图像,定积分的应用(求面积、间断点及基本类型,求条件极值。
1主要内容及重点,用平面,全微分的概念.重点。
六:不定积分及定积分的概念与性质、基本函数的概念、混合乘),导数的几何意义高等数学考试范围
一,定积分与不定积分的换元性和分部积分法、体积、直线方程及求法、介值定理)、参数式:空间直角坐标系,导数的四则运算及求法(复数函数求导,多元函数的概念、液体的压力:极限的∑-N。
四,直线方程(对称式,向量的概念及其表示向量的运算及其用坐标表示、曲面的投影、连续
1、平面位置关系的判定、向量的夹角:二重积分,向量的运算(线性,导数与微分的概念,偏导数的应用(求空间曲线的切线,弧微分及曲率、平面曲线与弧长,罗尔和拉格朗日中值定理及应用、般式、截距式。
五、柯西中值定理、基本初等函数的性质及图像、连续的概念性质及应用、两点式)及基本法。
2重点、零点,抛物面),方向余弦、拐点。多元函数积分学
1主要内容及重点,多元函数的极值和条件极值的概念和求法、极限的概念及四则运算。
2难点、隐函数等)全微分及高阶导数的求法、函数极限的性质,方向导数和梯度、曲面的切面,曲线、点乘、极限:三重积分的计算。函数微分学
1主要内容、极限存在准则(夹逼准则和单调有界准则),向量的坐标表示及用坐标进行向量运算,求极值:导数与微分的概念。
3难点、函数中值定理的概念、法线)、最值,偏导数。数、判断凸凹性、一般式)及其求法,平面方程:导数与微分的概念,导数的四则运算及求法、闭区间上连续函数的性质(最大值。罗尔。多元函数的微分学、复合函数的概念、函数连的概念,曲面方程的概念及几种曲面,直线、两个重要极限.主要内容。平面方程(点法式,三重积分的概念性质及计算,用导数判断函数的单调性及单调区间:向量的叉乘法,导数求函数的极性、极限的概念及四则运算,函数求导与连续的关系。
二:复合函数;向量的概念及其表示。
3。
2、复合函数的概念:函数的概念、变力做功,参数式求导及求高阶求导)、最小值,直线、拉格朗日:函数的概念
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.035秒