初中数学的基础知识高中数学都需要。
初中数学内容: 代数部分: 1、有理数、无理数、实数。 2、整式、分式、二次根式。
3、一元一次方程、一元二次方程、二(三)元一次方程组、二元二次方程组、分式方程、一元一次不等式。 4、函数(一次函数、二次函数、反比例函数)。
5、统计初步。 几何部分: 1、线段、角。
2、相交线、平行线。 3、三角形。
4、四边形。 5、相似形。
6、圆。 高中数学是全国高中生学习的一门学科。
包括《集合与函数》《三角函数》《不等式》《数列》《复数》《排列、组合、二项式定理》《立体几何》《平面解析几何》等部分。 高中数学知识框架: 在必修一里面主要学习了集合,包含集合的含义与表示,集合的基本关系,集合的基本运算;在剩下的几个章节则学习了几个重要的基本初等函数 在必修二里面则是学习了立体几何初步:包含简单几何体与简单多面体的三视图,空间图形的位置关系。
部分规则空间几何体的体积与表面积,第二章以数形结合的形式向大家介绍了圆和直线的性质,理科生则深入学习了空间直角坐标系 在必修三部分是对简单的概率论与数理统计进行了学习。和算法初步进行了学习。
必修四开端又学习了另一种基本初等函数--三角函数,在高中阶段主要是学习了,正弦,余弦,正切三个三角函数的性质与图像及三者之间的关系。包括三角函数限,弧度制,诱导公式等。
第二章则是学习了平面向量这一数学工具,这一章学习了向量的表示,向量的模和单位化,数量积和简单应用。在第三章又深入学习了三角函数的半角公式,和角,差角公式,2倍角公式。
在进一步延伸后又学习了降幂公式。 必修五第一章主要讲了等差与等比数列的性质,通项公式与前N项和的运算,第二章属平面解析几何的内容,主要介绍了正弦,余弦定理,第三章主要学习了不等式的性质与概念与LP问题初步(图解法)。
选修2-1第一章是常用逻辑用语,主要讲述了充分条件,必要条件和“或,且,非”等逻辑量词,在第二章节是又进一步讲述了空间解析几何与向量代数,理科生又多学习了二面角定理。第三章则是介绍了圆锥曲线有关知识,包括椭圆,双曲线,抛物线的定义性质,图像等。
选修2—2:第一章是推理与证明:介绍了归纳推理与类比推理,综合法,分析法,反证法,和归纳法。第二章和第三章则是导数的有关性质与运用。
第四章介绍了简单的微积分性质与运用(曲边梯形面积和与简单几何体体积);第五章介绍了数系的扩充。主要介绍了复数的表示,性质,运算等 选修2-3:主要为理科生学习,第一章为排列与组合,主要学习了科学技术原理,排列,组合和二项式定理。
第二章则介绍了二项分布,正态分布等常见的概率分布,第三章则是介绍了独立性检验与简单的线性回归分析。
你好,想学了,这是好事,哈哈。
不是你现在是初中生学是高中生,如果是初中生,那就把初中所学的计算,如有理数计算,分式计算,根式计算,解方程(一元一次方程,二元一次方程组,一元二次方程,分式方程等)弄熟,因为这些知识在高中是常用到的,如果这些知识不熟,必然影响你高中知识的学习;初中所学的函数有三个,一元一次,反比例,一元二次,这三个也要搞清楚,特别是一元二次函数更要搞清楚。
如果你是高中生,一个学年过去了,想必你也学了不少内容了,这时想学,那就要将前面没学好的,利用假期时间,找个优秀教师帮你恶补一下了。
最后,祝你好运,学有所成!
这个啊~~怎样才能学好数学 ★怎样才能学好数学? 要回答这个似乎非常简单:把定理、公式都记住,勤思好问,多做几道题,不就行了。
事实上并非如此,比如:有的同学把书上的黑体字都能一字不落地背下来,可就是不会用;有的同学不重视知识、方法的产生过程,死记结论,生搬硬套;有的同学眼高手低,“想”和“说”都没问题,一到“写”和“算”,就漏洞百出,错误连篇;有的同学懒得做题,觉得做题太辛苦,太枯燥,负担太重;也有的同学题做了不少,辅导书也看了不少,成绩就是上不去,还有的同学复习不得力,学一段、丢一段。 究其原因有两个:一是学习态度问题:有的同学在学习上态度暧昧,说不清楚是进取还是退缩,是坚持还是放弃,是维持还是改进,他们勤奋学习的决心经常动摇,投入学习的精力也非常有限,思维通常也是被动的、浅层的和粗放的,学习成绩也总是徘徊不前。
反之,有的同学学习目的明确,学习动力强劲,他们拥有坚韧不拔的意志、刻苦钻研的精神和自主学习的意识,他们总是想方设法解决学习中遇到的困难,主动向同学、老师求教,具有良好的自我认识能力和创造学习条件的能力。二是学习方法问题:有的同学根本就不琢磨学习方法,被动地跟着老师走,上课记笔记,下课写作业,机械应付,效果平平;有的同学今天试这种方法、明天试那种方法,“病急乱投医”,从不认真领会学习方法的实质,更不会将多种学习方法融入自己的日常学习环节,养成良好的学习习惯;更多的同学对学习方法存在片面的、甚至是错误的理解,比如,什么叫“会了”?是“听懂了”还是“能写了”,或者是“会讲了”?这种带有评价性的体验,对不同的学生来说,差异是非常大的,这种差异影响着学生的学习行为及其效果。
由此可见,正确的学习态度和科学的学习方法是学好数学的两大基石。这两大基石的形成又离不开平时的数学学习实践,下面就几个数学学习实践中的具体问题谈一谈如何学好数学。
一、数学运算 运算是学好数学的基本功。初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程。
初中运算能力不过关,会直接影响高中数学的学习:从目前的数学评价来说,运算准确还是一个很重要的方面,运算屡屡出错会打击学生学习数学的信心,从个性品质上说,运算能力差的同学往往粗枝大叶、不求甚解、眼高手低,从而阻碍了数学思维的进一步发展。从学生试卷的自我分析上看,会做而做错的题不在少数,且出错之处大部分是运算错误,并且是一些极其简单的小运算,如71-19=68,(3+3)2=81等,错误虽小,但决不可等闲视之,决不能让一句“马虎”掩盖了其背后的真正原因。
帮助学生认真分析运算出错的具体原因,是提高学生运算能力的有效手段之一。在面对复杂运算的时候,常常要注意以下两点: ①情绪稳定,算理明确,过程合理,速度均匀,结果准确; ②要自信,争取一次做对;慢一点,想清楚再写;少心算,少跳步,草稿纸上也要写清楚。
二、数学基础知识 理解和记忆数学基础知识是学好数学的前提。 ★什么是理解? 按照建构主义的观点,理解就是用自己的话去解释事物的意义,同一个数学概念,在不同学生的头脑中存在的形态是不一样的。
所以理解是个体对外部或内部信息进行主动的再加工过程,是一种创造性的“劳动”。 理解的标准是“准确”、“简单”和“全面”。
“准确”就是要抓住事物的本质;“简单”就是深入浅出、言简意赅;“全面”则是“既见树木,又见森林”,不重不漏。对数学基础知识的理解可以分为两个层面:一是知识的形成过程和表述;二是知识的引申及其蕴涵的数学思想方法和数学思维方法。
★什么是记忆? 一般地说,记忆是个体对其经验的识记、保持和再现,是信息的输入、编码、储存和提取。借助关键词或提示语尝试回忆的方法是一种比较有效的记忆方法,比如,看到“抛物线”三个字,你就会想到:抛物线的定义是什么?标准方程是什么?抛物线有几个方面的性质?关于抛物线有哪些典型的数学问题?不妨先写下所想到的内容,再去查找、对照,这样印象就会更加深刻。
另外,在数学学习中,要把记忆和推理紧密结合起来,比如在三角函数一章中,所有的公式都是以三角函数定义和加法定理为基础的,如果能在记忆公式的同时,掌握推导公式的方法,就能有效地防止遗忘。 总之,分阶段地整理数学基础知识,并能在理解的基础上进行记忆,可以极大地促进数学的学习。
三、数学解题 学数学没有捷径可走,保证做题的数量和质量是学好数学的必由之路。 1、如何保证数量? ① 选准一本与教材同步的辅导书或练习册。
② 做完一节的全部练习后,对照答案进行批改。千万别做一道对一道的答案,因为这样会造成思维中断和对答案的依赖心理;先易后难,遇到不会的题一定要先跳过去,以平稳的速度过一遍所有题目,先彻底解决会做的题;不会的题过多时,千万别急躁、泄气,其实你认为困难的题,对其他人来讲也是如此,只不过需要点时间和耐心;对于例题,有。
很多人都这样高中学不好就赖初中基础差。当上完高中回头看感觉初中数学没啥内容、太小儿科了、都不记得初中学过什么了。当然也不是说初中就不重要了。很多小地方都会用到初中的知识,当然也没有题目专门考过初中的知识。但是有时候这些小地方处理不好。后面考高中知识点的地方你根本就没法做了。这些小地方太多了。我也无法例举清。
现在我感觉从头学一遍初中知识这不现实。你最好还是碰到时专门找个笔记本记下来,慢慢的积累。这样虽然被动点不够还是可行的。
你现在学的集合除了解个一元二次方程外和初中没多少关系。不要老拿初中说事!
如果你非让说的话我就举几个比较重要的。
几何:在学空间几何时用到平面几何的知识
二次函数性质和特点:几乎所有关函数的地方都可能用到
圆的知识:在高中学圆时用到
代数:高中所有计算能力都是从这练出来的。
还有一些碎知识
高一时,我一开始数学总是考60-70分。本来初中我学的很好的平常考试90多分。我心里很不平衡。为啥我和别人做的一样甚至比他们做了不少的练习。怎么还是和他们一样考60-70分呢?我决定改变现状。我买了两本习题书。不停地做。学习例题上的做题方法。看上面对概念的理解。在做大量的练习。我不会的题就问老师。实在弄不清楚就把例题抄上几遍。两本书上的题几乎全做了。在期末考试时只错了一个选择题。我高中做的数学笔记有十几本吧!高三全部数学考试的平均分在135左右吧!要想人前显贵,就得背后受罪。还是要多做题啊!不靠基础不行,只靠基础是考不了高分的。
在考试后,那些数学很好的为什么思维就是比你开阔。一,他们聪明。没办法人和人人就是不一样。二,因为他们做的题多。我们不是常说见多识广嘛!
我说一下我的方法:
1 上课能分清老师讲课的重点.有选择的听讲.这样可提高效率.
2 除了能按时完成老师布置的任务还能主动找些练习来做,而且做完任何一道题后能,在检查一下.同时看看到底题目考了那些知识点.
3 有做笔记的习惯.把不会的和作错的题目或是好的方法记下来,平时多看看.
4 从做过的题目总结中总结方法,归结题型.
5 不会的问题要多请教老师.可以从老师那学很多巧妙的方法
6 做题要快,不然高考时是做不完的。而且要提高准确率。在一场考试中失误,粗心丢一二十分是很容易的。
7 做题要严谨。别少胳膊缺腿。这样很容易丢分的。虽说也就一两分。但一张试卷和起来就十几分了。
8 打好基础。不要因为题简单就不去做,往往越简单的题越爱丢分。很多题都是从课本例题演化来的。
9 重视选择和填空。做时要快、准。在这上面丢分就别想达到一流水平了。不会的不要马上就放弃。最后的大题都是分步得分的。
10 考试时合理分配时间,争取能做完。选择题30~35分钟 填空10分钟 简答题75~80分钟。做大题时平均一分钟使得不了一分的。考140甚至是150的关键是对速度和和准确率的把握和调节。
高等数学应该在学好中学数学的基础上学习,关系最密切的内容是三角函数、解析几何。有些中学这两部分内容没有学好,甚至有些内容根本没有学,例如三角函数里的和差化积与积化和差公式,解析几何里的极坐标,就有一些学校没有学,而在大学讲授高等数学时会直接用到这些知识,不可能再详细讲解这方面内容的。
现在的中学学了很多不该学的东西,又有很多该学的东西没有学好,造成很多学生认为高等数学难学,这实际上是误会。
高等数学里的概念比初等数学里多得多,有的还比较难理解,在正确理解概念的基础上,高等数学里的题目比现在中学里让学生做的初等数学题目容易多了,只要按部就班认真学习,学好高等数学其实是不困难的。
高等数学里主要是微积分,你说的“商科”不知道是什么性质的专业,是理科的还是文科的?如果是文科类专业,要求会低些,但是因为学生的基础也差些,仍然需要化力气才能学好的。
谈谈怎样学好高中数学 和初中数学相比,高中数学的内容多,抽象性、理论性强,因为不少同学进入高中之后很不适应,特别是高一年级,进校后,代数里首先遇到的是理论性很强的函数,再加上立体几何,空间概念、空间想象能力又不可能一下子就建立起来,这就使一些初中数学学得还不错的同学不能很快地适应而感到困难,以下就怎样学好高中数学谈几点意见和建议。
一、首先要改变观念。 初中阶段,特别是初中三年级,通过大量的练习,可使你的成绩有明显的提高,这是因为初中数学知识相对比较浅显,更易于掌握,通过反复练习,提高了熟练程度,即可提高成绩,既使是这样,对有些问题理解得不够深刻甚至是不理解的。
例如在初中问|a|=2时,a等于什么,在中考中错的人极少,然而进入高中后,老师问,如果|a|=2,且a 又如,前几年北京四中高一年级的一个同学在高一上学期期中考试以后,曾向老师提出“抗议”说:“你们平时的作业也不多,测验也很少,我不会学”,这也正说明了改变观念的重要性。 高中数学的理论性、抽象性强,就需要在对知识的理解上下功夫,要多思考,多研究。
二、提高听课的效率是关键。 学生学习期间,在课堂的时间占了一大部分。
因此听课的效率如何,决定着学习的基本状况,提高听课效率应注意以下几个方面: 1、课前预习能提高听课的针对性。 预习中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习还可以培养自己的自学能力。
2、听课过程中的科学。 首先应做好课前的物质准备和精神准备,以使得上课时不至于出现书、本等物丢三落四的现象;上课前也不应做过于激烈的体育运动或看小书、下棋、打牌、激烈争论等。
以免上课后还喘嘘嘘,或不能平静下来。 其次就是听课要全神贯注。
全神贯注就是全身心地投入课堂学习,耳到、眼到、心到、口到、手到。 耳到:就是专心听讲,听老师如何讲课,如何分析,如何归纳总结,另外,还要听同学们的答问,看是否对自己有所启发。
眼到:就是在听讲的同时看课本和板书,看老师讲课的表情,手势和演示实验的动作,生动而深刻的接受老师所要表达的思想。 心到:就是用心思考,跟上老师的数学思路,分析老师是如何抓住重点,解决疑难的。
口到:就是在老师的指导下,主动回答问题或参加讨论。 手到:就是在听、看、想、说的基础上划出课文的重点,记下讲课的要点以及自己的感受或有创新思维的见解。
若能做到上述“五到”,精力便会高度集中,课堂所学的一切重要内容便会在自己头脑中留下深刻的印象。 3、特别注意老师讲课的开头和结尾。
老师讲课开头,一般是概括前节课的要点指出本节课要讲的内容,是把旧知识和新知识联系起来的环节,结尾常常是对一节课所讲知识的归纳总结,具有高度的概括性,是在理解的基础上掌握本节知识方法的纲要。 4、要认真把握好思维逻辑,分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,提高思维和解决问题的能力。
此外还要特别注意老师讲课中的提示。 老师讲课中常常对一些重点难点会作出某些语言、语气、甚至是某种动作的提示。
最后一点就是作好笔记,笔记不是记录而是将上述听课中的要点,思维方法等作出简单扼要的记录,以便复习,消化,思考。 三、做好复习和总结工作。
1、做好及时的复习。 课完课的当天,必须做好当天的复习。
复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习:先把书,笔记合起来回忆上课老师讲的内容,例题:分析问题的思路、方法等(也可边想边在草稿本上写一写)尽量想得完整些。然后打开笔记与书本,对照一下还有哪些没记清的,把它补起来,就使得当天上课内容巩固下来,同时也就检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效果提出必要的改进措施。
2、做好单元复习。 学习一个单元后应进行阶段复习,复习方法也同及时复习一样,采取回忆式复习,而后与书、笔记相对照,使其内容完善,而后应做好单元小节。
3、做好单元小结。 单元小结内容应包括以下部分。
(1)本单元(章)的知识网络; (2)本章的基本思想与方法(应以典型例题形式将其表达出来); (3)自我体会:对本章内,自己做错的典型问题应有记载,分析其原因及正确答案,应记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。 四、关于做练习题量的问题 有不少同学把提高数学成绩的希望寄托在大量做题上。
我认为这是不妥当的,我认为,“不要以做题多少论英雄”,重要的不在做题多,而在于做题的效益要高。做题的目的在于检查你学的知识,方法是否掌握得很好。
如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的练习是必要的。而对于中档题,尢其要讲究做题的效益,即做题后有多大收获,这就需要在做题后进行一定。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.137秒