不好意思我不知道是必修几了不过这是必修一到必修五的望采纳~一、集合与简易逻辑:一、理解集合中的有关概念(1)集合中元素的特征:确定性,互异性,无序性。
(2)集合与元素的关系用符号=表示。(3)常用数集的符号表示:自然数集;正整数集;整数集;有理数集、实数集。
(4)集合的表示法:列举法,描述法,韦恩图。(5)空集是指不含任何元素的集合。
空集是任何集合的子集,是任何非空集合的真子集。二、函数一、映射与函数:(1)映射的概念:(2)一一映射:(3)函数的概念:二、函数的三要素:相同函数的判断方法:①对应法则;②定义域(两点必须同时具备)(1)函数解析式的求法:①定义法(拼凑):②换元法:③待定系数法:④赋值法:(2)函数定义域的求法:①含参问题的定义域要分类讨论;②对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。
(3)函数值域的求法:①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式;②逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解,型如:;④换元法:通过变量代换转化为能求值域的函数,化归思想;⑤三角有。不好意思我不知道是必修几了不过这是必修一到必修五的望采纳~一、集合与简易逻辑:一、理解集合中的有关概念(1)集合中元素的特征:确定性,互异性,无序性。
(2)集合与元素的关系用符号=表示。(3)常用数集的符号表示:自然数集;正整数集;整数集;有理数集、实数集。
(4)集合的表示法:列举法,描述法,韦恩图。(5)空集是指不含任何元素的集合。
空集是任何集合的子集,是任何非空集合的真子集。二、函数一、映射与函数:(1)映射的概念:(2)一一映射:(3)函数的概念:二、函数的三要素:相同函数的判断方法:①对应法则;②定义域(两点必须同时具备)(1)函数解析式的求法:①定义法(拼凑):②换元法:③待定系数法:④赋值法:(2)函数定义域的求法:①含参问题的定义域要分类讨论;②对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。
(3)函数值域的求法:①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式;②逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解,型如:;④换元法:通过变量代换转化为能求值域的函数,化归思想;⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;⑥基本不等式法:转化成型如:,利用平均值不等式公式来求值域;⑦单调性法:函数为单调函数,可根据函数的单调性求值域。⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。
三、函数的性质:函数的单调性、奇偶性、周期性单调性:定义:注意定义是相对与某个具体的区间而言。判定方法有:定义法(作差比较和作商比较)导数法(适用于多项式函数)复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。奇偶性:定义:注意区间是否关于原点对称,比较f(x)与f(-x)的关系。
f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数;f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。判别方法:定义法,图像法,复合函数法应用:把函数值进行转化求解。
周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.应用:求函数值和某个区间上的函数解析式。
四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)平移变换y=f(x)→y=f(x+a),y=f(x)+b注意:(ⅰ)有系数,要先提取系数。
如:把函数y=f(2x)经过平移得到函数y=f(2x+4)的图象。(ⅱ)会结合向量的平移,理解按照向量(m,n)平移的意义。
对称变换y=f(x)→y=f(-x),关于y轴对称y=f(x)→y=-f(x),关于x轴对称y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)伸缩变换:y=f(x)→y=f(ωx),y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。
一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称;五、反函数:(1)定义:(2)函数存在反函数的条件:(3)互为反函数的定义域与值域的关系:(4)求反函数的步骤:①将看成关于的方程,解出,若有两解,要注意解的选择;②将互换,得;③写出反函数的定义域(即的值域)。(5)互为反函数的图象间的关系:(6)原函数与反函数具有相同的单调性;(7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。
七、常用的初等函数:(1)一元一次函数:(2)一元二次函数:一般式两点式顶点式二次函数求最值问题:首先要采用配方法,化为一般式,有三个类型题型:(1)顶点固定,区间也固定。如:(2)顶。
高中数学基础知识与方法概要点滴 《代数》 一、函数与不等式单元 1、子集、交集、并集、补集的概念及简单的计算 2、正确使用 ,正确表示集合(列举法、描述法) 3、元素集的子集有 个 4、求函数定义域(主要是:分母不为0,偶次方根非负,对数的真数及低数的限制,反三角函数中自变量的限制) 5、求函数值域(配方法、反函数定义域法、判别式法、利用均值不等式、利用已知函数的单调性和有界性、换元法等) 6、利用均值不等式求函数最值(要点:一正、二定、三相等),也可考虑倒函数的单调性 7、一元二次函数在闭区间求最值:配方、考察图象在区间上的单调性 8、应用题求最值:选定自变量、列函数关系式、(双变量归一)、再求最值 9、求反函数: 与 一一对应, 要注明反函数的定义域(即原函数的值域)。
10、函数的奇偶性:①定义域关于原点对称,② 11、奇函数的图象关于原点对称, 或 无意义 偶函数的图象关于 轴对称 12、在关于原点的对称区间上:奇函数的增减性相同,偶函数的增减性相反 13、函数的单调性:①落实在“区间”上 ②任取“区间”内的 ,计算 14、正确讨论复合函数 的单调性 相同单调性的 与 复合,则 为增函数; 单调性相反的 与 复合,则 为减函数; 函数 ,满足 ,则图象的对称轴为 = 15、函数图像: 指数函数: 对数函数: 幂函数: 当 时, 为增; 为减。 (1)由定义域,值域确定范围,由对称对称对称性确定中心与轴, 由单调性确定曲线走势。
(2)指数曲线,对数曲线并,先确定渐近线 (3)注意平移: ; +b; (4)有绝对值时,注意“对称”与“翻转”( , ) (5)注意伸缩:横向 纵向 16、比较多个函数值的大小:(1)按“0”、“1”分界(2)同范围内按增减性。 17、解对数方程要验根。
对数的真数是多项式时,要加括号。 18、指数运算法则:am.an=am+n am÷an= (am)n= , = 对称运算法则: , , 恒等式: 换底公式: 推论: , , 19、比例性质:若 则 , (合比), (分比); (分比); (等比) 20、不等式的基本性质和运算性质 21、证不等式常用方法:比较法、综合法、分析法、基本不等式,数学归纳法、反证法等 22、解不等式:一元一次与一元二次式是基础 (1)高次不等式(分解因式、数轴标根);分式不等式(移项、通分、分解因式) (2)无理不等式( 两边为正再平方) (3)指数或对数不算式(考虑定义域与单调性,对于字母底数要分 与 讨论。
答案一定要分开写) (4)含绝对值的不等式( , 或 ,多个绝对值时用零点分区法) 23、运用函数知识、韦达定理、判别式结合图象研究一元二次方程根的分布(两正根、两负根、一正一负,两根都小于 ,两根都大于 , 在两根之间,两根在 内,有且只有一根在 内,两根分别在 与 内,等等) 掌握两个(或三个)正数的算术平均值不大小于个可平均数“定理”及其灵活运用。 24、,当 时, 或 恒成立。
25、掌握两个(或三个)正数的算术平均值不小于几何平均值定理及其应用。 二、数列与极限单元 (一)、基本概念: 1、数列的定义及表示方法:数列{an}或数列a1,a2,a3,…, , … 或给出某种递推关系等。
2、数列的项与项数: 叫做数列的第n项,n叫做项数 3、有穷数列与无穷数列: 4、递增(减)、摆动、循环数列: 5、数列{ }的通项公式 , 6、数列的前n项和公式Sn=a1+a2+a3+…+an 7、等差数列、公差d、等差数列的结构: 8、等比数列、公比q、等比数列的结构: 9、无穷递缩等比数列的意义及公比q的取值范围:-10,有两个值) (三)、基本性质 20、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等差数列。 21、等差数列{an}中,若m+n=p+q,则 22、等比数列{an}中,若m+n=p+q,则 23、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、……仍为等比数列。
24、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。 25、两个等比数列{an}与{bn}的积、商、倒数的数列{anbn}、、仍为等比数列。
26、等差数列{an}的任意等距离的项构成的数列仍为等差数列。 27、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
28、三个数成等差的设法: ;四个数成等差的设法: 。 29、三个数成等比的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?) 30、{an}为等差数列,则 (c>0)是等比数列。
31、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c 1) 是等差数列。 32、无穷递缩等比数列的所有项和公式:S= (-10) 如an= ③ an=f(n) 研究函数f(n)的增减性 如an= 40、数学归纳法证题:“两步、三式、四成立”格式要规范,由 要用假设,推理严密。
三、复数单元 1、复数概念的发展 2、复数的代数形式与三角形式互化:复数的点、向量表示 3、复数三角形式的标准:模非负、角相同,“C”前“S”后加号连 几种常见的非三角形式化三角形式: 等等 4、运算:代数形式加减乘除方(二项式定理),开平方(待定系数法)三角形式(乘、除、乘方(棣莫定理),开方(方根公式)) 虚数的整数次幂运算与实数相同: (虚数没。
高一数学目录- 人教版必修一第一章集合与函数概念1.1集合1.2函数及其表示1.3函数的基本性质实习作业小结复习参考题第二章基本初等函数(Ⅰ)2.1指数函数2.2对数函数2.3幂函数小结复习参考题第三章函数的应用3.1函数与方程3.2函数模型及其应用实习作业小结复习参考题必修二第一章空间几何体1.1空间几何体的结构1.2空间几何体的三视图和直观图1.3空间几何体的表面积与体积实习作业小结复习参考题第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系2.2直线、平面平行的判定及其性质2.3直线、平面垂直的判定及其性质小结复习参考题第三章直线与方程3.1直线的倾斜角与斜率3.2直线的方程3.3直线的交点坐标与距离公式小结复习参考题必修三第一章算法初步1.1算法与程序框图1.2基本算法语句1.3算法案例阅读与思考割圆术小结复习参考题第二章统计2.1随机抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2用样本估计总体阅读与思考生产过程中的质量控制图2.3变量间的相关关系阅读与思考相关关系的强与弱实习作业小结复习参考题第三章概率3.1随机事件的概率阅读与思考天气变化的认识过程3.2古典概型3.3几何概型阅读与思考概率与密码小结复习参考题必修四第一章三角函数1.1任意角和弧度制1.2任意角的三角函数1.3三角函数的诱导公式1.4三角函数的图象与性质1.5函数y=Asin(ωx+ψ)1.6三角函数模型的简单应用小结复习参考题第二章平面向量2.1平面向量的实际背景及基本概念2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例小结复习参考题第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2简单的三角恒等变换小结复习参考题必修五第一章解三角形1.1正弦定理和余弦定理探究与发现解三角形的进一步讨论1.2应用举例阅读与思考海伦和秦九韶1.3实习作业小结复习参考题第二章数列2.1数列的概念与简单表示法阅读与思考斐波那契数列阅读与思考估计根号下2的值2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列前n项和阅读与思考九连环探究与发现购房中的数学小结复习参考题第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题阅读与思考错在哪儿信息技术应用用Excel解线性规划问题举例3.4基本不等式。
高一数学必修1知识点 函数 高中数学必修4知识点 2、角 的顶点与原点重合,角的始边与 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角. 第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 终边在 轴上的角的集合为 终边在 轴上的角的集合为 终边在坐标轴上的角的集合为 3、与角 终边相同的角的集合为 4、已知 是第几象限角,确定 所在象限的方法:先把各象限均分 等份,再从 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则 原来是第几象限对应的标号即为 终边所落在的区域. 5、长度等于半径长的弧所对的圆心角叫做 弧度. 6、半径为 的圆的圆心角 所对弧的长为 ,则角 的弧度数的绝对值是 . 7、弧度制与角度制的换算公式: , , . 8、若扇形的圆心角为 ,半径为 ,弧长为 ,周长为 ,面积为 ,则 , , . 9、设 是一个任意大小的角, 的终边上任意一点 的坐标是 ,它与原点的距离是 ,则 , , . 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. Pv x y A O M T 11、三角函数线: , , . 12、同角三角函数的基本关系: ; . 13、三角函数的诱导公式: , , . , , . , , . , , . 口诀:函数名称不变,符号看象限. , . , . 口诀:正弦与余弦互换,符号看象限. 14、函数 的图象上所有点向左(右)平移 个单位长度,得到函数 的图象;再将函数 的图象上所有点的横坐标伸长(缩短)到原来的 倍(纵坐标不变),得到函数 的图象;再将函数 的图象上所有点的纵坐标伸长(缩短)到原来的 倍(横坐标不变),得到函数 的图象. 函数 的图象上所有点的横坐标伸长(缩短)到原来的 倍(纵坐标不变),得到函数 的图象;再将函数 的图象上所有点向左(右)平移 个单位长度,得到函数 的图象;再将函数 的图象上所有点的纵坐标伸长(缩短)到原来的 倍(横坐标不变),得到函数 的图象. 函数 的性质: ①振幅: ;②周期: ;③频率: ;④相位: ;⑤初相: . 函数 ,当 时,取得最小值为 ;当 时,取得最大值为 ,则 , , . 15、正弦函数、余弦函数和正切函数的图象与性质: 函 数 性 质 图象 定义域 值域 最值 当 时, ;当 时, . 当 时, ;当 时, . 既无最大值也无最小值 周期性 奇偶性 奇函数 偶函数 奇函数 单调性 在 上是增函数;在 上是减函数. 在 上是增函数;在 上是减函数. 在 上是增函数. 对称性 对称中心 对称轴 对称中心 对称轴 对称中心 无对称轴 16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为 的向量. 单位向量:长度等于 个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式: . ⑷运算性质:①交换律: ;②结合律: ;③ . ⑸坐标运算:设 , ,则 . 18、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设 , ,则 . 设 、两点的坐标分别为 , ,则 . 19、向量数乘运算: ⑴实数 与向量 的积是一个向量的运算叫做向量的数乘,记作 . ① ; ②当 时, 的方向与 的方向相同;当 时, 的方向与 的方向相反;当 时, . ⑵运算律:① ;② ;③ . ⑶坐标运算:设 ,则 . 20、向量共线定理:向量 与 共线,当且仅当有唯一一个实数 ,使 . 设 , ,其中 ,则当且仅当 时,向量 、共线. 21、平面向量基本定理:如果 、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量 ,有且只有一对实数 、,使 .(不共线的向量 、作为这一平面内所有向量的一组基底) 22、分点坐标公式:设点 是线段 上的一点, 、的坐标分别是 , ,当 时,点 的坐标是 . 23、平面向量的数量积: ⑴ .零向量与任一向量的数量积为 . ⑵性质:设 和 都是非零向量,则① .②当 与 同向时, ;当 与 反向时, ; 或 .③ . ⑶运算律:① ;② ;③ . ⑷坐标运算:设两个非零向量 , ,则 . 若 ,则 ,或 . 设 , ,则 . 设 、都是非零向量, , , 是 与 的夹角,则 . 24、两角和与差的正弦、余弦和正切公式: ⑴ ; ⑵ ; ⑶ ; ⑷ ; ⑸ ( ); ⑹ ( ). 25、二倍角的正弦、余弦和正切公式: ⑴ . ⑵ ( , ). ⑶ . 26、,其中 . 必修1 的出不来了。
人教版高一数学下册第四章知识点总结
数学在科学发展和现代生活生产中的应用非常广泛,以下是学而思网校为大家整理的人教版高一数学下册第四章知识点总结,希望可以帮助大家学习。 》》》空间直角坐标系 高一下册数学第四单元空间直角坐标系知识点2016 人教版高一数学第四章空间直角坐标系知识点 》》》直线与圆的位置关系 高一下册数学第四单元知识点:直线与圆的位置关系 人教版高一数学直线与圆的位。查看详细
人教版高一数学下册第四章圆的方程知识点
随着科学技术的发展,数学预见的精确性和可检验性日益显示其重要意义。以下是学而思网校为大家整理的人教版高一数学下册第四章圆的方程知识点,希望大家认真学习! 1、圆的定义 平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。 2、圆的方程 (x-a)^2+(y-b)^2=r^2 (1)标准方程,圆心(a,b),半径为r; (2)求圆方程的方法: 一般都采用待定系数法:先设后。查看详细
人教版高一数学直线与圆的位置关系知识点
数学在科学发展和现代生活生产中的应用非常广泛,以下是学而思网校为大家整理的人教版高一数学直线与圆的位置关系知识点,希望能帮助大家学习。 一、教学目标 1、知识与技能 (1)理解直线与圆的位置的种类; (2)利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离; (3)会用点到直线的距离来判断直线与圆的位置关系. 2、过程与方法 设直线:,圆:,圆的半径为,圆。查看详细
人教版高一数学第四章空间直角坐标系知识点
数学在科学发展和现代生活生产中的应用非常广泛,以下是学而思网校为大家整理的人教版高一数学第四章空间直角坐标系知识点,希望能帮助大家学习。 空间直角坐标系:过定点O,作三条互相垂直的数轴,它们都以O为原点且一般具有相同的长度单位、这三条轴分别叫做x轴(横轴)、y轴(纵轴)、z轴(竖轴);统称坐标轴、通常把x轴和y轴配置在水平面上,而z轴则是铅垂线;它们的正方向要.
高中“数学”教学目录 必修一第一章1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法第二章2.1函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.1.5用计算机作函数图像(选学)2.2一次函数和二次函数2.2.1一次函数的性质与图像2.2.2二次函数的性质与图像2.3函数的应用(1)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法----二分法第三章基本初等函数(1)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(2)必修二第一章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱 棱锥 棱台的结构特征1.1.3圆柱 圆锥 圆台 和 球1.1.4投影与直观图1.1.5三视图1.1.6棱柱 棱锥 棱台和球的表面积1.1.7柱 锥 台和球的体积1.2点 线 面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系1.2.3空间中的垂直关系第二章平面解析几何初步2.1平面直角坐标系中的基本公式2.1.1数轴上的基本公式2.1.2平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的集中形式的位置关系2.2.3两条直线2.2.4点到直线的距离2.3圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系2.4.1空间直角坐标系2.4.2空间两点距离公式必修三第一章 算法初步1.1算法与程序框图1.1.1算法的概念1.1.2程序框图1.1.3算法的三种基本逻辑结构和框图表示1.2基本算法语句1.2.1赋值 输入 输出语句1.2.2条件语句1.2.3循环语句1.3中国古代数学中的算法案例第二章统计2.1随机抽样2.1.1简单的随机抽样2.1.2系统抽样2.1.3分层抽样2.1.4数据的收集2.2用样本估计总体2.2.1用样本的频率分布估计总体的分布2.2.2用样本的数字特征估计总体的数字特征2.3变量的相关性2.3.1变量间的相互关系2.3.2两个变量的线性相关第三章概率3.1事件与概率3.1.1随机现象3.1.2事件与基本事件空间3.1.3频率与概率3.1.4概率的加法公式3.2古典概型3.2.1古典概型3.2.2概率的一般加法公式(选学)3.3随机数的含义与应用3.3.1几何概型3.3.2随机数的含义与应用3.4概率的应用必修四第一章 基本的初等函数(2)1.1任意角的概念与弧度制1.1.1角的概念的推广1.1.2弧度制和弧度制与角度制的换算1.2任意角的三角函数1.2.1三角函数的定义1.2.2单位圆与三角函数线1.2.3同角三角函数的基本关系式1.2.4诱导公式1.3三角函数的图像与性质1.3.1正弦函数的图像与性质1.3.2余弦函数 正切函数的图像与性质1.3.3已知三角函数值求角第二章平面向量2.1向量的线性运算2.1.1向量的概念2.1.2向量的加法2.1.3向量的减法2.1.4数乘向量2.1.5向量共线的条件和轴上向量坐标运算2.2向量的分解和向量的坐标运算2.2.1平面向量基本定理2.2.2向量的正交分解与向量的直角坐标运算2.2.3用平面向量坐标表示向量共线条件2.3平面向量的数量积2.3.1向量数量积的物理背景与定义2.3.2向量数量积的运算律2.3.3向量数量积的坐标运算与度量公式2.4向量的应用2.4.1向量在几何中的应用2.4.2向量在物理中的应用第三章三角恒等变换3.1和角公式3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切3.2倍角公式和半角公式3.2.1倍角公式3.2.2半角的正弦 余弦和正切3.3三角函数的积化和差与和差化积必修五第一章 解三角形1.1正弦定理和余弦定理1.1.1正弦定理1.1.2余弦定理1.2应用举例第二章数列2.1数列2.1.1数列2.1.2数列的递推公式(选学)2.2等差数列2.2.1等差数列2.2.2等差数列的前n项和2.3等比数列2.3.1等比数列2.3.2等比数列的前n项和第三章不等式3.1不等关系与不等式3.1.1不等关系与不等式3.1.2不等式性质3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单的线性规划问题3.5.1二元一次不等式(组)所表示的平面区域3.5.2简单线性规划选修2-1第一章 常用逻辑用语1.1命题与量词1.1.1命题1.1.2量词1.2基本逻辑联结词1.2.1且 与 或1.2.2非 (否定)1.3充分条件 必要条件与命题的四种形式1.3.1推出与充分条件 必要条件1.3.2命题的四种形式第二章圆锥曲线方程2.1曲线方程2.1.1曲线与方程的概念2.1.2由曲线求它的方程 由方程研究曲线性质2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的集几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线第三章空间向量与几何体3.1空间向量及其运算3.1.1空间向量的线性运算3.1.2空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2空间向量在立体几何中的应用3.2.1直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离(选学)选修2-2第一章 导数及其应用1.1导数1.1.1函数的平均变化率1.1.2瞬时速度与导数1.1.3导数的几何1.2导数的运算1.2.1常数函数与幂函数的。
高一数学必修1第一章知识点总结 一、集合有关概念1. 集合的含义2. 集合的中元素的三个特性:(1) 元素的确定性,(2) 元素的互异性,(3) 元素的无序性, 3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1) 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2) 集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集) 记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1) 列举法:{a,b,c……}2) 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。{xR| x-3>2} ,{x| x-3>2}3) 语言描述法:例:{不是直角三角形的三角形}4) Venn图:4、集合的分类:(1) 有限集 含有有限个元素的集合(2) 无限集 含有无限个元素的集合(3) 空集 不含任何元素的集合 例:{x|x2=-5} 二、集合间的基本关系1.“包含”关系—子集 注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A2.“相等”关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等” 即:① 任何一个集合是它本身的子集。AA ②真子集:如果AB,且A B那就说集合A是集合B的真子集,记作A B(或B A) ③如果 AB, BC ,那么 AC ④ 如果AB 同时 BA 那么A=B3. 不含任何元素的集合叫做空集,记为Φ 规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
有n个元素的集合,含有2n个子集,2n-1个真子集 三、集合的运算 运算类型 交 集 并 集 补 集 定 义 由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作'A交B'),即A B={x|x A,且x B}. 由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作'A并B'),即A B ={x|x A,或x B}). 设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集) 记作 ,即 CSA= 韦 恩 图 示 性 质 A A=A A Φ=Φ A B=B A A B A A B B A A=A A Φ=A A B=B A A B A A B B(CuA) (CuB)= Cu (A B)(CuA) (CuB)= Cu(A B) A (CuA)=U A (CuA)= Φ. 例题:1.下列四组对象,能构成集合的是 ( ) A某班所有高个子的学生 B著名的艺术家 C一切很大的书 D 倒数等于它自身的实数2.集合{a,b,c }的真子集共有 个 3.若集合M={y|y=x2-2x+1,x R},N={x|x≥0},则M与N的关系是 .4.设集合A= ,B= ,若A B,则 的取值范围是 5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。6. 用描述法表示图中阴影部分的点(含边界上的点)组成的集合M= .7.已知集合A={x| x2+2x-8=0}, B={x| x2-5x+6=0}, C={x| x2-mx+m2-19=0}, 若B∩C≠Φ,A∩C=Φ,求m的值 二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域. 注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零; (2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零, (7)实际问题中的函数的定义域还要保证实际问题有意义. 相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)(见课本21页相关例2)2.值域 : 先考虑其定义域(1)观察法 (2)配方法(3)代换法3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . (2) 画法 A、描点法:B、图象变换法 常用变换方法有三种1) 平移变换2) 伸缩变换3) 对称变换4.区间的概念 (1)区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间 (3)区间的数轴表示.5.映射 一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。记作f:A→B6.分段函数 (1)在定义域的不同部分上有不同的解析表达式的函数。
(2)各部分的自变量的取值情况.(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集. 补充:复合函数 如果y=f(u)(u∈M),u=g(x)。
只有五个
一 集合与简易逻辑
集合具有四个性质 广泛性 集合的元素什么都可以
确定性 集合中的元素必须是确定的,比如说是好学生就不具有这种性质,因为它的概念是模糊不清的
互异性 集合中的元素必须是互不相等的,一个元素不能重复出现
无序性 集合中的元素与顺序无关
二 函数
这是个重点,但是说起来也不好说,要作专题训练,比如说二次函数,指数对数函数等等做这一类型题的时候,要掌握几个函数思想如 构造函数 函数与方程结合 对称思想,换元等等
三 数列
这也是个比较重要的题型,做体的时候要有整体思想,整体代换,等比等差要分开来,也要注意联系,这样才能做好,注意观察数列的形式判断是什么数列,还要掌握求数列通向公式的几种方法,和求和公式,求和方法,比如裂项相消,错位相减,公式法,分组求和法等等
四 三角函数
三角函数不是考试题型,只是个应用的知识点,所以只要记熟特殊角的三角函数值和一些重要的定理就行
五 平面向量
这是个比较抽象的把几何与代数结合起来的重难点,结体的时候要有技巧,主要就是把基本知识掌握到位,注意拓展,另外要多做题,见的题型多,结体的时候就有思路,能够把问题简单化,有利于提高做题效率
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:4.443秒