1.数学是一切再教育的基础,数学是培养逻辑思维重要渠道,不要只看眼前,往长的想,数学是所有学科的灵魂。
2.数学是一切科学的基础,一切重大科技进展无不以数学息息相关。没有了数学就没有电脑、电视、航天飞机,就没有今天这么丰富多彩的生活。
3.数学是一种工具学科,是学习其他学科的基础,同时还是提高人的判断能力、分析能力、理解能力的学科。
4.数学不仅是一门科学,而且是一种普遍适用的技术。它是科学的大门和钥匙,学数学是令自己变的理性的一个很重要的措施,数学本身也有自身的乐趣。
5.数学能让你思考任何问题的时候都比较缜密,而不至于思绪紊乱。还能使你的脑子反映灵活,对突发事件的处理手段也更理性。
6.数学给予人们的不仅是知识,更重要的是能力,这种能力包括观察实验、收集信息、归纳类比、直觉判断、逻辑推理、建立模型和精确计算。这些能力和培养,将使人终身受益。
7.经验是数学的基础,问题是数学的心脏,思考是数学的核心,发展是数学的目标,思想方法是数学的灵魂……数学思想方法是数学知识的精髓,是分析、解决数学问题的基本原则,也是数学素养的重要内涵,它是培养学生良好思维品质的催化剂。
8.数学与我们的生活有着密切的联系,让学生认识到现实生活中蕴涵着大量的数学信息,数学在现实生活中有着广泛的应用,并从中体会到数学的价值,增进对数学的理解和应用数学的信心等。
9.或许让学生体会到数学源于生活、用于生活的同时,更应该让学生体会到数学高于生活,体会到数学可以带动社会的发展,带动生活质量的提高,这样更能激发学生学好数学。
10.数学应用之广泛,小至日常生活中柴米油盐酱醋茶的买卖、利率、保险、医疗费用的计算,大至天文地理、环境生态、信息网络、质量控制、管理与预测、大型工程、农业经济、国防科学、航天事业均大量存在着运用数学的踪影。例如你可以用黄金分割的知识来审视一样事物,看它美不美,又美在哪里,是否符合黄金分割。又可以运用简单的数学知识来分析你家一年的收入与支出,每年各增长多少,只要你想得出,生活中处处有数学。
数学是开发思维的一门学科,同时也是学技术的基础,如物理,化学,机械,计算机,光电技术都需要数学做基础,数学不学好,学这些时就困难了.所以,数学一定要学好. 学习要安排一个简单可行的计划, 改善学习方法.同时也要适当参加学校的活动,全面发展. 在学习过程中,一定要:多听(听课),多记(记重要的范文,记概念,记公式),多看(看书),多做(做作业),多问(不懂就问),多动手(做实验),多复习,多总结.用记课堂笔记的方法集中上课注意力. 英语多看重要课文,熟悉词汇及用法. 其他时间中,一定要保证学习时间,保证各科的学习质量,不能偏科. 每天要保证足够的睡眠,保证学习效率. 安排适当的自由时间用于与家人和朋友的交往及其他活动. 通过不懈的努力,使成绩一步一步的提高和稳固.对考试尽力, 考试时一定要心细,最后冲刺时,一定要平常心.考试结束后要认真总结,以便于以后更好的学习. 眼下:放下包袱,平时:努力学习.考前:认真备战,考试时:不言放弃,考后:平常心.。
数学是一切科学的基础,可以说人类的每一次重大进步背后都是数学在后面强有力的支撑。
第一次工业革命,人类发明了蒸汽机,没有数学又哪里会有现在先进的汽车自动化生产线。现在的信息化革命,没有数学,又哪里使信息可以如此快速的交换。
数学是一种工具学科,是学习其他学科的基础。往往数学上的突破,会带动很多其他学科的重大突破。
一、如何学好数学:1、掌握数学运算 运算是学好数学的基本功。初中阶段是培养数学运算能力的黄金时期,初中代数的主要内容都和运算有关,如有理数的运算、整式的运算、因式分解、分式的运算、根式的运算和解方程。
初中运算能力不过关,会直接影响高中数学的学习。在面对复杂运算的时候,常常要注意以下两点:①情绪稳定,算理明确,过程合理,速度均匀,结果准确;②要自信,争取一次做对;慢一点,想清楚再写;少心算,少跳步,草稿纸上也要写清楚。
2、学习数学基础知识 理解和记忆数学基础知识是学好数学的前提。理解就是用自己的话去解释事物的意义,同一个数学概念,在不同学生的头脑中存在的形态是不一样的。
所以理解是个体对外部或内部信息进行主动的再加工过程,是一种创造性的“劳动”。理解的标准是“准确”、“简单”和“全面”。
“准确”就是要抓住事物的本质;“简单”就是深入浅出、言简意赅;“全面”则是“既见树木,又见森林”,不重不漏。对数学基础知识的理解可以分为两个层面:一是知识的形成过程和表述;二是知识的引申及其蕴涵的数学思想方法和数学思维方法。
记忆是个体对其经验的识记、保持和再现,是信息的输入、编码、储存和提取。借助关键词或提示语尝试回忆的方法是一种比较有效的记忆方法,比如,看到“抛物线”三个字,你就会想到:抛物线的定义是什么?标准方程是什么?抛物线有几个方面的性质?关于抛物线有哪些典型的数学问题?不妨先写下所想到的内容,再去查找、对照,这样印象就会更加深刻。
另外,在数学学习中,要把记忆和推理紧密结合起来,比如在三角函数一章中,所有的公式都是以三角函数定义和加法定理为基础的,如果能在记忆公式的同时,掌握推导公式的方法,就能有效地防止遗忘。3、学会数学解题 学数学没有捷径可走,保证做题的数量和质量是学好数学的必由之路。
保证数量就是①选准一本与教材同步的辅导书或练习册。②做完一节的全部练习后,对照答案进行批改。
千万别做一道对一道的答案,因为这样会造成思维中断和对答案的依赖心理;先易后难,遇到不会的题一定要先跳过去,以平稳的速度过一遍所有题目,先彻底解决会做的题;不会的题过多时,千万别急躁、泄气,其实你认为困难的题,对其他人来讲也是如此,只不过需要点时间和耐心;对于例题,有两种处理方式:“先做后看”与“先看后测”。③选择有思考价值的题,与同学、老师交流,并把心得记在自习本上。
④每天保证1小时左右的练习时间。保证质量就是①题不在多,而在于精,学会“解剖麻雀”。
充分理解题意,注意对整个问题的转译,深化对题中某个条件的认识;看看与哪些数学基础知识相联系,有没有出现一些新的功能或用途?再现思维活动经过,分析想法的产生及错因的由来,要求用口语化的语言真实地叙述自己的做题经过和感想,想到什么就写什么,以便挖掘出一般的数学思想方法和数学思维方法;一题多解,一题多变,多元归一。②落实:不仅要落实思维过程,而且要落实解答过程。
③复习:“温故而知新”,把一些比较“经典”的题重做几遍,把做错的题当作一面“镜子”进行自我反思,也是一种高效率的、针对性较强的学习方法。4、培养数学思维 数学思维与哲学思想的融合是学好数学的高层次要求。
比如,数学思维方法都不是单独存在的,都有其对立面,并且两者能够在解决问题的过程中相互转换、相互补充,如直觉与逻辑,发散与定向、宏观与微观、顺向与逆向等等,如果我们能够在一种方法受阻的情况下自觉地转向与其对立的另一种方法,或许就会有“山重水复疑无路,柳暗花明又一村”的感觉。比如,在一些数列问题中,求通项公式和前n项和公式的方法,除了演绎推理外,还可用归纳推理。
应该说,领悟数学思维中的哲学思想和在哲学思想的指导下进行数学思维,是提高学生数学素养、培养学生数学能力的重要方法。只要我们重视运算能力的培养,扎扎实实地掌握数学基础知识,学会聪明地做题,并且能够站到哲学的高度去反思自己的数学思维活动,就一定能把数学学好。
二、学数学的好处:锻炼人的思维敏捷度啊学习数学可以锻炼一个人的逻辑思维能力,数学是一门逻辑性很强的科目,能够锻炼一个人的思维逻辑。增强一个人的判断能力,同时数学也是很多科目的基础,许多问题都是通过数学的方法去解决的。
有这样一个传说,一次,数学家欧基里德教一个学生学习某个定理。结束后这个年轻人问欧基里德,他学了能得到什么好处。
欧基里德叫过一个奴隶,对他说:“给他3个奥波尔,他说他学了东西要得到好处。”在数学还非常哲学化的古希腊,探究世界的本原、万物之道,而要得到什么“好处”,受。
数学是一大基础学科,可一这么说哲学是人类用语言来解释世界,那么数学就是用数字来解释世界公利一点,学数学就是为了高考,为了大学毕业,找个好工作,如果只为这点高中水平也就够了,但我个人认为数学不仅可以锻炼我们逻辑思维能力而且还能提高人的智商,就是使人变聪明!数学是使人变聪明的学科!数学是研究数与形的科学,我们生活的这个世界都是由数与形组成(广义的角度),研究它们的规律可以使人们更好的认识世界改造世界。
任何一次科技的进步,社会的发展都离不开数学。例如微积分,微积分是近代数学,物理学的基础。
利用微积分的理论人们可以计算出复杂几何图形的面积,以及物理上力学的发展也起了重要作用!说点现实意义吧,数学可一帮我们在做某种选择时做到最优!例如什么100分的满分60分及格呢?其实这正式用了数学中的黄金比1:0。618再四舍五入得到的,这是一个最优选择的比例。
例如现在我们用的电脑,里面的一些程序都是建立在数学逻辑的基础上的,学好数学有助于了解这些程序,这样你会编程了,自己做软件,就可一赚钱,比尔盖茨就是一个例子,他数学肯定很好!。
1.数学可以使你的大脑变得更加聪明,增加你思维的严谨性。
2.数学属于基础学科,数学学不好什么也学不好,无论你要学习什么,都要由数学的基础。 3.数学知识贯穿于我们的生活中,可以说是无处不在,我们每天都在不知不觉中运用这数学知识生活着。
4.数学是研究世间上,一切数量关系和空间位置关系。在经济学、物理学……等一切方面都大量应用。
可以说离开数学,一切都寸步难行。 5.学数学可以更快地杀死脑细胞,促进脑细胞的代谢 6.锻炼大脑反应力和灵活性 7.有一位数学家(应该是欧几里德)说:如果你想知道数学有什么用的话,就不要来学数学了 大概的意思是如果天天考虑数学有什么用的话 是学不好数学的。
呵呵 所以只要好好学就好啦,不要想太多哦。
“小学数学教材结构是在综合考虑数学本身的逻辑规律以及小学生认识规律和心理发展水平的前提下,用数学的基本概念、基本规律、基本事实和基本方法联系起来的整体。
这个整体不是知识、原则的罗列和拼凑,也不是各部分数学知识的简单求和,而是一个上下贯通、纵横交叉、紧密联系的知识网络。”所以,我在数学基础知识的教学中,特别注重知识的“生长点”与“延伸点”。
把每堂课教学的知识置于整体知识体系中,注重知识的结构和体系,处理好局部知识与整体知识的关系,不但要使学生体验知识的产生过程,还要引导学生感受数学的整体性,使学生明白,对于某些数学知识可以从不同的角度加以分析、从不同的层次进行理解。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.060秒