现在做手机天线就够 都用PRO E 这是要会的 还有就是 CAD出2D图纸要用 要大概的熟悉注塑模 板金 可以不精通这些 其实做天线结构 也不需要什么专业知识 天线结构 出天线支架图 (这支架图是终端发给你的 ) 在开模之前 看这模具是否可行 有没有一些地方 模具做不出来 看扣怎么做(为了节约成本 模具少做滑块) 天线弹片 首先看天线支架 做成钢片的是否可行 (这里就需要你了解 五金件的特性 和成型) 如果不可以做那 天线只能做FPC 一办弹片不能做的 就是用FPC 不过这成本就搞 客户要坚持做 stamping的 那么就要看你怎么改支架了 在不影响装备 和其他干涩的 情况下 尽量改得简单点 这样方便 stamping 能更好的做 (stamping 要注意就是 弧面要少 折弯少 每个折弯处 的宽度要宽 方便加工) 天线是根据 RF 用铜皮调试以后 那个结构画的 所以在你拿到RF 的铜皮样时就要看 用stamping 时候可以做出来 折弯能不能折 槽的宽度够不够 一般最小为 0.7 天线画好后就 转2D 发出去打样 后面 性能确认了 就 在支架上加热熔点 这要根据 天线的走线加 如果加不了 就建议RF 修改 看天线的治具 是不是你们结构自己做 如果是自己做 就要做治具 (治具 就是 天线热熔的) 我就是搞手机天线结构的 呵呵。
【天线原理】一、天线工作原理与主要参数天线是任何一个无线电通信系统都不可缺少的重要组成部分。
合理慎重地选用天线,可以取得较远的通信距离和良好的通信效果。(一)天线的作用各类无线电设备所要执行的任务虽然不同,但天线在设备中的作用却是基本相同的。
任何无线电设备都是通过无线电波来传递信息,因此就必须有能辐射或接收电磁波的装置。所以,天线的第一个作用就是辐射和接收电磁波。
当然能辐射或接收电磁波的东西不一定都能用来作为天线。例如任何高频电路,只要不是完全屏蔽起来的,都可以向周围空间或多或少地辐射电磁波,或者从周围空间或多或少地接收到电磁波。
但是,任意一个高频电路并不一定能作天线,因为它辐射和接收电磁波的效率很低。只有能够有效地辐射和接收电磁波的设备才有可能作为天线使用。
天线的另一个作用是”能量转换”。大家知道,发信机通过馈线送入天线的并不是无线电波,收信天线也不能直接把无线电波送入收信机,这里有一个能量的转换过程,即把发信机所产生的高频振荡电流经馈线送入天线输入端,天线要把高频电流转换为空间高频电磁波,以波的形式向周围空间辐射。
反之在接收时,也是通过收信天线把截获的高频电磁波的能量转换成高频电流的能量后,再送给收信机。显然这里有一个转换效率问题。
天线增益越高,则转换效率就越高。(二)天线的分类天线的形式繁多,按其用途可以分为发信天线和收信天线;按使用波段可以分为长、中、短、超短波天线和微波天线、微带天线等。
此外,我们还可按其工作原理和结构来进行分类。为便于分析和研究天线的性能,一般把天线按其结构形式分为两大类:一类是半径远小于波长的金属导线构成的线状天线,另一类是用尺寸大于波长的金属或介质面构成的面状天线。
线状天线主要用于长、中、短波频段,面状天线主要用于厘米或毫米波频段;甚高频段一般以线状天线为主,而特高频段则线、面状天线兼用。 线状天线和面状天线的基本工作原理是相同的。
(三)天线的工作原理天线本身就是一个振荡器,但又与普通的LC振荡回路不同,它是普通振荡回路的变形。图1-9示出了它的演变过程。
图中LC是发信机的振荡回路。 如图1-9(a)所示,电场集中在电容器的两个极板之中,而磁场则分布在电感线圈的有限空间里,电磁波显然不能向广阔空间辐射。
如果将振荡电路展开,使电磁场分布于空间很大的范围,如图1-9(b)、(c)所示,这就创造了有利于辐射的条件;于是,来自发信机的、已调制的高频信号电流由馈线送到天线上,并经天线把高频电流能量转变为相应的电磁波能量,向空间辐射,如图1-9(d)所示。 电磁波的能量从发信天线辐射出去以后,将沿地表面所有方向向前传播。
若在交变电磁场中放置一导线,由于磁力线切割导线,就在导线两端激励一定的交变电压——电动势,其频率与发信频率相同。若将该导线通过馈线与收信机相连,在收信机中就可以获得已调波信号的电流。
因此,这个导线就起了接收电磁波能量并转变为高频信号电流能量的作用,所以称此导线为收信天线。无论是发信天线还是收信天线,它们都属于能量变换器,“可逆性”是一般能量变换器的特性。
同样一副天线,它既可作为发信天线使用,也可作为收信天线使用,通信设备一般都是收、发共同用一根天线。 因此,同一根天线既关系到发信系统的有效能量输出,又直接影响着收信系统的性能。
天线的可逆性不仅表现在发信天线可以用作收信天线,收信天线可以用作发信天线,并且表现在天线用作发信天线时的参数,与用作收信天线时的参数保持不变,这就是天线的互易原理。 为便于讨论,常将天线作为发信天线来分析,所得结论同样适用于该天线用作收信天线的情况。
(四)天线的主要参数1。天线效率天线效率为天线辐射功率Pr与天线输入功率Pin(辐射功率与天线内所消耗的功率Ps之和)之比。
即 上式还可用天线输入端的辐射电阻Ro和损耗电阻Rs表示,即 可见,要提高辐射效率,应设法增大辐射电阻和减小损耗电阻。2。
方向性系数为了定量表示天线辐射功率在空间的集中程度,我们采用方向性系数D,并定义如下:在相同的辐射功率下,天线产生于某点的电场强度的平方E2与点源天线(无方向性辐射源)在该点产生的电场强度平方Eo2之比,叫做该天线在该点方向的方向性系数,即 Prz和PDZ分别表示该天线与点源天线的辐射功率。 由定义可知,由于天线在各个方向辐射强度不同,方向性系数D也不同,一般所讲的某天线的方向性系数,都是指最大辐射的方向性系数(除注明方向),并且实际天线的方向性系数都是大于1的。
3。增益系数天线增益系数等于天线效率η与其方向性系数D的乘积,即G=ηD。
天线增益比天线方向性系数更全面地反映了天线的性质。天线增益不仅考虑了方向性引起的场强变化,还考虑了天线效率对场强的影响。
天线增益系数一般可用分贝(dB)表示,即G(dB)=10logG。 在工程上,人们常把上述定义的增益称为“绝对增益”,而把相对于某一特定的作为参考标准的天线增益称为“相对增益”。
4。方向图一个发信天线向空间各。
大学物理,模拟电路,高频电路, 专业英语。
微波技术与天线,作者是殷际杰编著,出版社是电子工业出版社,出版时间是 2009-1-1。
《微波技术与天线》讲述与"微波技术与天线"有关的基本规律、基本分析与计算方法以及基本工作原理。《微波技术与天线》力求内容精练,物理概念清晰,文字易懂,便于自学。全书共分7章:绪论、传输线理论、微波规则传输系统、微波谐振腔、微波网络基础、微波无源元件以及天线。《微波技术与天线》每章均精选了大量的例题和习题,其中例题和习题涵盖核心内容,选题广泛,难易适中。
《微波技术与天线》可供工科信息工程、电子科学与技术等专业的本科生、专科生以及高职学生用作教材,也可供高等学校有关专业的学生和有关科技人员用作参考书。也可作为高等院校电子信息类专业电磁场与微波技术、天线原理等课程的本科生教材,也可供相关专业的研究生和工程技术人员参考。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.086秒