如图:⊙O的弦AC、BD交于点S,过点A、B分别作⊙O的切线得交点P,延长AD、BC得交点Q,求证:P、S、Q三点共线 如图:已经AB是圆O的直径,CD是圆的弦且垂直于AB,交AB于点E,QP是过E点的弦,连接BQ、BP,交CD于点H,点G。
证明:三角形GPE和三角形QHE相似问题补充 2009-12-15 18:18L是圆O上的任意一点,以D为圆心,以DL为半径画圆,交圆O于点M,连接BD、CL、CM,BD于CL、CM相交于点R和点S。证明:三角形BRC和三角形BSC相似 其实有很多很多,具体你看我的问问回答吧。
如图:
⊙O的弦AC、BD交于点S,过点A、B分别作⊙O的切线得交点P,延长AD、BC得交点Q,求证:P、S、Q三点共线
如图:已经AB是圆O的直径,CD是圆的弦且垂直于AB,交AB于点E,QP是过E点的弦,连接BQ、BP,交CD于点H,点G。
证明:三角形GPE和三角形QHE相似
问题补充 2009-12-15 18:18
L是圆O上的任意一点,以D为圆心,以DL为半径画圆,交圆O于点M,连接BD、CL、CM,BD于CL、CM相交于点R和点S。
证明:三角形BRC和三角形BSC相似
其实有很多很多,具体你看我的问问回答吧
去百度文库,查看完整内容>
内容来自用户:李氏香甜玉米
高一数学期中复习之一——圆
一.基本知识之关于圆的方程
1.圆心为,半径为的圆的标准方程为:.特殊地,
当时,圆心在原点的圆的方程为:.
2.圆的一般方程,其中.
圆心为点,半径,
3.二元二次方程,表示圆的方程的充要条件是:
①项项的系数相同且不为,即;②没有项,即;③.
4.圆:的参数方程为(为参数).
特殊地,的参数方程为(为参数).
5.圆系方程:过圆:与圆:交点的圆系方程是(不含圆),
当时圆系方程变为两圆公共弦所在直线方程.
二.基本知识之关于直线与圆的位置关系
位置关系|相切|相交|相离|
几何特征|代数特征|
将直线方程代入圆的方程得到一元二次方程,设它的判别式为,圆的半径为,圆心到直线的距离为,则直线与圆的位置关系满足以下关系:
直线截圆所得弦长的计算方法:
①利用弦长计算公式:设直线与圆相交于,两点,
则弦;
②利用垂径定理和勾股定理:(其中为圆的半径,直线到圆心的距离).
3.圆与圆的位置关系:设两圆的半径分别为和,圆心距为,则两圆的位置关系满足以下关系:
位置关系|外离|外切|相交|内切|内含|
几何特征|代数特征|无实数解|一组实数解|两组实数解|一组实数解|无实数解|
三.分类例题练习解:(
圆的有关性质
一,〖知识点〗圆、圆的对称性、点和圆的位置关系、不在同一直线上的三点确定一个圆、三角形的外接圆、垂径定理逆定理、圆心角、弧、弦、弦心距之间的关系、圆周角定理、圆内接四边形的性质
〖大纲要求〗
1. 正确理解和应用圆的点集定义,掌握点和圆的位置关系;
2. 熟练地掌握确定一个圆的条件,即圆心、半径;直径;不在同一直线上三点。一个
圆的圆心只确定圆的位置,而半径也只能确定圆的大小,两个条件确定一条直线,三个条件确定一个圆,过三角形的三个顶点的圆存在并且唯一;
3. 熟练地掌握和灵活应用圆的有关性质:同(等)圆中半径相等、直径相等直径是半
径的2倍;直径是最大的弦;圆是轴对称图形,经过圆心的任一条直线都是对称轴;圆是中心对称图形,圆心是对称中心;圆具有旋转不变性;垂径定理及其推论;圆心角、圆周角、弧、弦、弦心距之间的关系;
4. 掌握和圆有关的角:圆心角、圆周角的定义及其度量;圆心角等于同(等)弧上的
圆周角的2倍;同(等)弧上的圆周角相等;直径(半圆)上的圆周角是直角;90°的圆周角所对的弦是直径;
5. 掌握圆内接四边形的性质定理:它沟通了圆内外图形的关系,并能应用它解决有关
问题;
6. 注意:(1)垂径定理及其推论是指:一条弦①在“过圆心”②“垂直于另一条弦”
③“平分这另一条弦”④“平分这另一条弦所对的劣弧”⑤“ 平分这另一条弦所对的优弧”的五个条件中任意具有两个条件,则必具有另外三个结论(当①③为条件时要对另一条弦增加它不是直径的限制),条理性的记忆,不但简化了对它实际代表的10条定理的记忆且便于解题时的灵活应用,垂径定理提供了证明线段相等、角相等、垂直关系等的重要依据;(2)有弦可作弦心距组成垂径定理图形;见到直径要想到它所对的圆周角是直角,想垂径定理;想到过它的端点若有切线,则与它垂直,反之,若有垂线则是切线,想到它被圆心所平分;(3)见到四个点在圆上想到有4组相等的同弧所对的圆周角,要想到应用圆内接四边形的性质。
〖考查重点与常见题型〗
1. 判断基本概念、基本定理等的正误,在中考题中常以选择题、填空题的形式考查学
生对基本概念和基本定理的正确理解,如:下列语句中,正确的有( )
(A)相等的圆心角所对的弧相等 (B)平分弦的直径垂直于弦
(C)长度相等的两条弧是等弧 (D)弦过圆心的每一条直线都是圆的对称轴
2. 论证线段相等、三角形相似、角相等、弧相等及线段的倍分等。此种结论的证明重
点考查了全等三角形和相似三角形判定,垂径定理及其推论、圆周角、圆心角的性质及切线的性质,弦切角等有关圆的基础知识,常以解答题形式出现。
二,〖知识点〗
相交弦定理、切割线定理及其推论
〖大纲要求〗
1. 正误相交弦定理、切割线定理及其推论;
2. 了解圆幂定理的内在联系;
3. 熟练地应用定理解决有关问题;
4. 注意(1)相交弦定理、切割线定理及其推论统称为圆幂定理,圆幂定理是圆和相似
三角形结合的产物。这几个定理可统一记忆成一个定理:过圆内或圆外一点作圆的两条割线,则这两条割线被圆截出的两弦被定点分(内分或外分)成两线段长的积相等(至于切线可看作是两条交点重合的割线)。使用时注意每条线段的两个端点一个是公共点,另一个是与圆的交点;
(2)见圆中有两条相交想到相交弦定理;见到切线与一条割线相交则想到切割线定理;若有两条切线相交则想到切线长定理,并熟悉此时图形中存在着一个以交点和圆心连线为对称轴的对称图形。
〖考查重点与常见题型〗
证明等积式、等比式及混合等式等。此种结论的证明重点考查了相似三角形,切割线定
理及其推论,相交弦定理及圆的一些知识。常见题型以中档解答题为主,也有一些出现在选择题或填空题中。
一、圆及圆的相关量的定义(28个) 1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。 2.圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。 3.顶点在圆心上的角叫做圆心角。
顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。 4.过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。
和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。 5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。
6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
7.在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。
这个扇形的半径成为圆锥的母线。 二、有关圆的字母表示方法(7个) 圆--⊙ 半径—r 弧--⌒ 直径—d 扇形弧长/圆锥母线—l 周长—C 面积—S 三、有关圆的基本性质与定理(27个) 1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离): P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO 2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。
圆也是中心对称图形,其对称中心是圆心。 3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。 4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。
5.一条弧所对的圆周角等于它所对的圆心角的一半。 6.直径所对的圆周角是直角。
90度的圆周角所对的弦是直径。 7.不在同一直线上的3个点确定一个圆。
8.一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。
9.直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距离): AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO 10.圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。 11.圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P): 外离P>R+r;外切P=R+r;相交R-r 四、有关圆的计算公式 1.圆的周长C=2πr=πd 2.圆的面积S=πr² 3.扇形弧长l=nπr/180 4.扇形面积S=nπr²/360=rl/2 5.圆锥侧面积S=πrl 五 圆的方程 1.圆的标准方程 在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是 (x-a)^2+(y-b)^2=r^2 2.圆的一般方程 把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是 x^2+y^2+Dx+Ey+F=0 和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2 相关知识:圆的离心率e=0.在圆上任意一点的曲率半径都是r. 六 圆与直线的位置关系判断 平面内,直线Ax+By+C=O与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是 讨论如下2种情况: (1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0], 代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0. 利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下: 如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交 如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切 如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离 (2)如果B=0即直线为Ax+C=0,即x=-C/A.它平行于y轴(或垂直于x轴) 将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2 令y=b,求出此时的两个x值x1,x2,并且我们规定x1<x2 当x=-C/Ax2时,直线与圆相离 当x1<x=-C/A<x2时,直线与圆相交 当x=-C/A=x1或x=-C/A=x2时,直线与圆相切。
一,〖知识点〗圆、圆的对称性、点和圆的位置关系、不在同一直线上的三点确定一个圆、三角形的外接圆、垂径定理逆定理、圆心角、弧、弦、弦心距之间的关系、圆周角定理、圆内接四边形的性质 〖大纲要求〗 1. 正确理解和应用圆的点集定义,掌握点和圆的位置关系; 2. 熟练地掌握确定一个圆的条件,即圆心、半径;直径;不在同一直线上三点。
一个 圆的圆心只确定圆的位置,而半径也只能确定圆的大小,两个条件确定一条直线,三个条件确定一个圆,过三角形的三个顶点的圆存在并且唯一; 3. 熟练地掌握和灵活应用圆的有关性质:同(等)圆中半径相等、直径相等直径是半 径的2倍;直径是最大的弦;圆是轴对称图形,经过圆心的任一条直线都是对称轴;圆是中心对称图形,圆心是对称中心;圆具有旋转不变性;垂径定理及其推论;圆心角、圆周角、弧、弦、弦心距之间的关系; 4. 掌握和圆有关的角:圆心角、圆周角的定义及其度量;圆心角等于同(等)弧上的 圆周角的2倍;同(等)弧上的圆周角相等;直径(半圆)上的圆周角是直角;90°的圆周角所对的弦是直径; 5. 掌握圆内接四边形的性质定理:它沟通了圆内外图形的关系,并能应用它解决有关 问题; 6. 注意:(1)垂径定理及其推论是指:一条弦①在“过圆心”②“垂直于另一条弦” ③“平分这另一条弦”④“平分这另一条弦所对的劣弧”⑤“ 平分这另一条弦所对的优弧”的五个条件中任意具有两个条件,则必具有另外三个结论(当①③为条件时要对另一条弦增加它不是直径的限制),条理性的记忆,不但简化了对它实际代表的10条定理的记忆且便于解题时的灵活应用,垂径定理提供了证明线段相等、角相等、垂直关系等的重要依据;(2)有弦可作弦心距组成垂径定理图形;见到直径要想到它所对的圆周角是直角,想垂径定理;想到过它的端点若有切线,则与它垂直,反之,若有垂线则是切线,想到它被圆心所平分;(3)见到四个点在圆上想到有4组相等的同弧所对的圆周角,要想到应用圆内接四边形的性质。 〖考查重点与常见题型〗 1. 判断基本概念、基本定理等的正误,在中考题中常以选择题、填空题的形式考查学 生对基本概念和基本定理的正确理解,如:下列语句中,正确的有( ) (A)相等的圆心角所对的弧相等 (B)平分弦的直径垂直于弦 (C)长度相等的两条弧是等弧 (D)弦过圆心的每一条直线都是圆的对称轴 2. 论证线段相等、三角形相似、角相等、弧相等及线段的倍分等。
此种结论的证明重 点考查了全等三角形和相似三角形判定,垂径定理及其推论、圆周角、圆心角的性质及切线的性质,弦切角等有关圆的基础知识,常以解答题形式出现。 二,〖知识点〗 相交弦定理、切割线定理及其推论 〖大纲要求〗 1. 正误相交弦定理、切割线定理及其推论; 2. 了解圆幂定理的内在联系; 3. 熟练地应用定理解决有关问题; 4. 注意(1)相交弦定理、切割线定理及其推论统称为圆幂定理,圆幂定理是圆和相似 三角形结合的产物。
这几个定理可统一记忆成一个定理:过圆内或圆外一点作圆的两条割线,则这两条割线被圆截出的两弦被定点分(内分或外分)成两线段长的积相等(至于切线可看作是两条交点重合的割线)。使用时注意每条线段的两个端点一个是公共点,另一个是与圆的交点; (2)见圆中有两条相交想到相交弦定理;见到切线与一条割线相交则想到切割线定理;若有两条切线相交则想到切线长定理,并熟悉此时图形中存在着一个以交点和圆心连线为对称轴的对称图形。
〖考查重点与常见题型〗 证明等积式、等比式及混合等式等。此种结论的证明重点考查了相似三角形,切割线定 理及其推论,相交弦定理及圆的一些知识。
常见题型以中档解答题为主,也有一些出现在选择题或填空题中。
说几个吧(应该够你做2天) 证明:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)*(BD/DC)*(CE/EA)=1。
证明:同一三角形的垂心、重心、外心三点共线 证明:已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小, 证明:△ABC的内切圆分别切边AB、BC、CA于点D、E、F,则AE、BF、CD三线共点 证明:已知圆内接六边形ABCDEF的边AB、DE延长线交于点G,边BC、EF延长线交于点H,边CD、FA延长线交于点K,则H、G、K三点共线 证明:一动点P与两定点A、B的距离之比等于定比m:n,则点P的轨迹,是以定比m:n内分和外分定线段的两个分点的连线为直径的圆 难度系数均为N。
、圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
2、圆心:圆任意两条对称轴的交点为圆心。 注:圆心一般符号O表示
3、直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。
4、半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。
5、圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴
6、在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=d/2。
7、圆的半径或直径决定圆的大小,圆心决定圆的位置。
8、圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。
9、圆周率:圆的周长与直径的比值叫做圆周率。
10、圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。
11、直径所对的圆周角是直角。90°的圆周角所对的弦是直径。
12、圆的面积公式:圆所占平面的大小叫做圆的面积。πr^2;,用字母S表示。
13、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
14、在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
二、周长计算公式
(1)已知直径:C=πd
(2)已知半径:C=2πr
(3)已知周长:D=c/π
(4)圆周长的一半:1/2周长(曲线)
(5)半圆的周长:1/2周长+直径(π÷2+1)
三、面积计算公式:
(1)已知半径:S=πr2
(2)已知直径:S=π(d/2)2
(3)已知周长:S=π[c÷(2π)]2
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.303秒