从我省的实际情况来讲,本书的第一章是重点 先看第三章复数 1概念(就是要在心中牢记的) 复数、复数集、实部、虚部 P103 复平面、实轴、虚轴 P104 区分向量的模与复数的模 P105 共轭复数 P110 2计算(考试中主要的考点,常出在选择填空,重点) 四则运算 P107-110 重点是分母实数化 再看第二章 1概念 归纳推理P71 类比推理P73 演绎推理P78,三段论是重点 2技巧 反证法P89 数学归纳法(完全归纳)P93 出于弱化技巧,强化计算的高考方针,对于技巧的考察要求在降低,对于这些证明思想,或者说方法只要知道就行,如果考到也是倒数第二道大题的第三小问,学有余力的同学可以试试。
一般的同学没必要花太多时间。 第一章 重点中的重点 每年必考 占卷面分数在25以上 初级要求 1概念 平均变化率P3 瞬时变化率、导数、导数的定义式P5 导函数P9 2计算 基本初等函数的导数公式P14 熟记 导数运算法则P15 熟记 复合函数求导P17难点,联系必修一中关于复合函数的定义复习 3应用 研究函数单调性P23黑体字 研究函数极值P29黑体字 研究函数最值P31黑体字 定积分在我省不考,如果要复习,则知道其计算方法即可P47 P53微积分基本定理 以上是初级要求 概念知道,会求导是关键。
中级要求 导数定义式的变形P5① 会分析原函数图像与导函数图像,特别注意与x轴的交点的含义,对应起来 增加复合函数的复杂度,锻炼求导的准确性,求导是计算的第一步,如果错了,嘿嘿~~~~ 重点关注P32习题B组第一大题,这四个小题讲的是如何构造新函数用导数知识判断大小 这是压轴题第二小题的基本模型,用导数沟通了函数的单调性与大小的比较。一般压轴题做到最后就是构造函数,用导数判断单调性,比大小 高级要求 联系物理知识,运动定理 学会求二阶导数,以此来研究一阶导数的性质,在通过此研究原函数性质。
属于压轴题的最后一小题类型,常常结合函数的构造,变形,不等式的放缩法等 注重细节,比如y=1/x 的两个单调递减区间之间是不能用∪的。
一、集合、简易逻辑(14课时,8个) 1.集合; 2.子集; 3.补集; 4.交集; 5.并集; 6.逻辑连结词; 7.四种命题; 8.充要条件. 二、函数(30课时,12个) 1.映射; 2.函数; 3.函数的单调性; 4.反函数; 5.互为反函数的函数图象间的关系; 6.指数概念的扩充; 7.有理指数幂的运算; 8.指数函数; 9.对数; 10.对数的运算性质; 11.对数函数. 12.函数的应用举例. 三、数列(12课时,5个) 1.数列; 2.等差数列及其通项公式; 3.等差数列前n项和公式; 4.等比数列及其通顶公式; 5.等比数列前n项和公式. 四、三角函数(46课时17个) 1.角的概念的推广; 2.弧度制; 3.任意角的三角函数; 4,单位圆中的三角函数线; 5.同角三角函数的基本关系式; 6.正弦、余弦的诱导公式' 7.两角和与差的正弦、余弦、正切; 8.二倍角的正弦、余弦、正切; 9.正弦函数、余弦函数的图象和性质; 10.周期函数; 11.函数的奇偶性; 12.函数 的图象; 13.正切函数的图象和性质; 14.已知三角函数值求角; 15.正弦定理; 16余弦定理; 17斜三角形解法举例. 五、平面向量(12课时,8个) 1.向量 2.向量的加法与减法 3.实数与向量的积; 4.平面向量的坐标表示; 5.线段的定比分点; 6.平面向量的数量积; 7.平面两点间的距离; 8.平移. 六、不等式(22课时,5个) 1.不等式; 2.不等式的基本性质; 3.不等式的证明; 4.不等式的解法; 5.含绝对值的不等式. 七、直线和圆的方程(22课时,12个) 1.直线的倾斜角和斜率; 2.直线方程的点斜式和两点式; 3.直线方程的一般式; 4.两条直线平行与垂直的条件; 5.两条直线的交角; 6.点到直线的距离; 7.用二元一次不等式表示平面区域; 8.简单线性规划问题. 9.曲线与方程的概念; 10.由已知条件列出曲线方程; 11.圆的标准方程和一般方程; 12.圆的参数方程. 八、圆锥曲线(18课时,7个) 1椭圆及其标准方程; 2.椭圆的简单几何性质; 3.椭圆的参数方程; 4.双曲线及其标准方程; 5.双曲线的简单几何性质; 6.抛物线及其标准方程; 7.抛物线的简单几何性质. 九、(B)直线、平面、简单何体(36课时,28个) 1.平面及基本性质; 2.平面图形直观图的画法; 3.平面直线; 4.直线和平面平行的判定与性质; 5,直线和平面垂直的判与性质; 6.三垂线定理及其逆定理; 7.两个平面的位置关系; 8.空间向量及其加法、减法与数乘; 9.空间向量的坐标表示; 10.空间向量的数量积; 11.直线的方向向量; 12.异面直线所成的角; 13.异面直线的公垂线; 14异面直线的距离; 15.直线和平面垂直的性质; 16.平面的法向量; 17.点到平面的距离; 18.直线和平面所成的角; 19.向量在平面内的射影; 20.平面与平面平行的性质; 21.平行平面间的距离; 22.二面角及其平面角; 23.两个平面垂直的判定和性质; 24.多面体; 25.棱柱; 26.棱锥; 27.正多面体; 28.球. 十、排列、组合、二项式定理(18课时,8个) 1.分类计数原理与分步计数原理. 2.排列; 3.排列数公式' 4.组合; 5.组合数公式; 6.组合数的两个性质; 7.二项式定理; 8.二项展开式的性质. 十一、概率(12课时,5个) 1.随机事件的概率; 2.等可能事件的概率; 3.互斥事件有一个发生的概率; 4.相互独立事件同时发生的概率; 5.独立重复试验. 选修Ⅱ(24个) 十二、概率与统计(14课时,6个) 1.离散型随机变量的分布列; 2.离散型随机变量的期望值和方差; 3.抽样方法; 4.总体分布的估计; 5.正态分布; 6.线性回归. 十三、极限(12课时,6个) 1.数学归纳法; 2.数学归纳法应用举例; 3.数列的极限; 4.函数的极限; 5.极限的四则运算; 6.函数的连续性. 十四、导数(18课时,8个) 1.导数的概念; 2.导数的几何意义; 3.几种常见函数的导数; 4.两个函数的和、差、积、商的导数; 5.复合函数的导数; 6.基本导数公式; 7.利用导数研究函数的单调性和极值; 8函数的最大值和最小值. 十五、复数(4课时,4个) 1.复数的概念; 2.复数的加法和减法; 3.复数的乘法和除法 答案补充 高中数学有130个知识点,从前一份试卷要考查90个知识点,覆盖率达70%左右,而且把这一项作为衡量试卷成功与否的标准之一.这一传统近年被打破,取而代之的是关注思维,突出能力,重视思想方法和思维能力的考查. 现在的我们学数学比前人幸福啊!! 最后,我建议你经常上这个网站啦,.cn ,相信对你的学习会有帮助的,祝你成功! 答案补充 一试 全国高中数学联赛的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。
二试 1、平面几何 基本要求:掌握初中数学竞赛大纲所确定的所有内容。 补充要求:面积和面积方法。
几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。 几个重要的极值:到三角形三顶点距离之和最小的点--费马点。
到三角形三顶点距离的平方和最小的点,重心。三角形内到三边距离之积最大的点,重心。
几何不等式。 简单的等周问题。
了解下述定理: 在周长一定的n边形的集合中,正n边形的面积最大。 在周长一定的简单闭曲线的集合中,圆的面积最大。
在面。
双曲线方程典例分析
江西省永丰中学 刘 忠
一、求双曲线的标准方程
求双曲线的标准方程 或 (a、b>0),通常是利用双曲线的有关概念及性质再 结合其它知识直接求出a、b或利用待定系数法.
例1 求与双曲线 有公共渐近线,且过点 的双曲线的共轭双曲线方程.
解 令与双曲线 有公共渐近线的双曲线系方程为 ,将点 代入,得 ,∴双曲线方程为 ,由共轭双曲线的定义,可得此双曲线的共轭双曲线方程为 .
评 此例是“求与已知双曲线共渐近线的双曲线方程”类型的题.一般地,与双曲线 有公共渐近线的双曲线的方程可设为 (kR,且k≠0);有公共焦点的双曲线方程可设为 ,本题用的是待定系数法.
例2 双曲线的实半轴与虚半轴长的积为 ,它的两焦点分别为F1、F2,直线 过F2且与直线F1F2的夹角为 ,且 , 与线段F1F2的垂直平分线的交点为P,线段PF2与双曲线的交点为Q,且 ,建立适当的坐标系,求双曲线的方程.
解 以F1F2的中点为原点,F1、F2所在直线为x轴建立坐标系,则所求双曲线方程为 (a>0,b>0),设F2(c,0),不妨设 的方程为 ,它与y轴交点 ,由定比分点坐标公式,得Q点的坐标为 ,由点Q在双曲线上可得 ,又 ,
∴ , ,∴双曲线方程为 .
评 此例用的是直接法.
二、双曲线定义的应用
1、第一定义的应用
例3 设F1、F2为双曲线 的两个焦点,点P在双曲线上,且满足∠F1PF2=900,求ΔF1PF2的面积.
解 由双曲线的第一定义知, ,两边平方,得 .
∵∠F1PF2=900,∴ ,
∴ ,
∴ .
2、第二定义的应用
例4 已知双曲线 的离心率 ,左、右焦点分别为F1、F2,左准线为l,能否在双曲线左支上找到一点P,使 是 P到l的距离d与 的比例中项?
解 设存在点 ,则 ,由双曲线的第二定义,得 ,
∴ , ,又 ,
即 ,解之,得 ,
∵ ,
∴ , 矛盾,故点P不存在.
评 以上二例若不用双曲线的定义得到焦半径 、
或其关系,解题过程将复杂得多.
三、双曲线性质的应用
例5 设双曲线 ( )的半焦距为c,
直线l过(a,0)、(0,b)两点,已知原点到 的距离为 ,
求双曲线的离心率.
解析 这里求双曲线的离心率即求 ,是个几何问题,怎么把
题目中的条件与之联系起来呢?如图1,
∵ , , ,由面积法知ab= ,考虑到 ,
知 即 ,亦即 ,注意到a<b的条件,可求得 .
四、与双曲线有关的轨迹问题
例6 以动点P为圆心的圆与⊙A: 及⊙B: 都外切,求点P的轨迹方程.
解 设动点P(x,y),动圆半径为r,由题意知 , , .
∴ .∴ , ,据 双曲线的定义知,点P的轨迹是以A、B为焦点的双曲线的右支,方程为 : .
例 7 如图2,从双曲线 上任一点Q引直线 的垂线,垂足为N,求线段QN的中点P的轨迹方程.
解析 因点P随Q的运动而运动,而点Q在已知双曲线上,
故可从寻求 Q点的坐标与P点的坐标之间的关系入手,用转移法达到目的.
设动点P的坐标为 ,点Q的坐标为 ,
则 N点的坐标为 .
∵点 N在直线 上,∴ ……①
又∵PQ垂直于直线 ,∴ ,
即 ……②
联立 ①、②解得 .又∵点N 在双曲线 上,
∴ ,
即 ,化简,得点P的轨迹方程为: .
五、与双曲线有关的综合题
例8 已知双曲线 ,其左右焦点分别为F1、F2,直线l过其右焦点F2且与双曲线 的右支交于A、B两点,求 的最小值.
解 设 , ,( 、).由双曲线的第二定义,得
, ,
∴ ,
设直线l的倾角为θ,∵l与双曲线右支交于两点A、B,∴ .
①当 时,l的方程为 ,代入双曲线方程得
.
由韦达定理得: .
∴ .
②当 时,l的方程为 ,∴ ,∴ .
综①②所述,知所求最小值为 .
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.720秒