《定理1》正弦定理 《定理2》余弦定理 △ABC中,有关系 a2=b2+c2-2bccosA; (*) b2=c2+a2-2cacosB; c2=a2+b2-2abcosC; 有时也用它的等价形式 a=ccosB+bcosC; b=acosC+ccosA; (**) c=acosB+bcosA。
证明简介 余弦定理的证法很多,下面介绍一种复数证法 如图建立复平面 则由=(bcosA-c2)+(bsinθ)2 即a2=b2+c2-2bccosA, 同理可证(*)中另外两式;至于**式, 《定理3》梅内劳斯定理 证法简介 本题可以添加平行线来证明,也可不添辅助线,仅用正弦定理来证明。 在△FBD、△CDE、△AEF中,由正弦定理,分别有 《定理4》塞瓦定理 《定理5》塞瓦定理逆定理 《定理6》斯特瓦尔特定理 。
塞瓦定理 在△ABC内任取一点O, 直线AO、BO、CO分别交对边于D、E、F,则 (BD/DC)*(CE/EA)*(AF/FB)=1
梅涅劳斯定理 如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)*(BD/DC)*(CE/EA)=1。 或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1 。
托密勒定理是如果圆有内接四边形,则四边形对边乘积之和等于对角线的乘积。
西姆松定理是一个几何定理。表述为:过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。(此线常称为西姆松线)。西姆松定理的逆定理为:若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上。
首先这几个网址包含了最全的平面几何的知识:几何定理:/view/587949.htm?func=retitle几何:/taglist?tag=%BC%B8%BA%CE&tagfromview下面是二试平面几何部分的考纲。
建议你在“几何”那个网址中搜索一下相关定理着重学习。平面几何 基本要求:掌握初中数学竞赛大纲所确定的所有内容。
补充要求:面积和面积方法。 几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
几个重要的极值:到三角形三顶点距离之和最小的点--费马点。到三角形三顶点距离的平方和最小的点--重心。
三角形内到三边距离之积最大的点--重心。 几何不等式。
简单的等周问题。了解下述定理: 在周长一定的n边形的集合中,正n边形的面积最大。
在周长一定的简单闭曲线的集合中,圆的面积最大。 在面积一定的n边形的集合中,正n边形的周长最小。
在面积一定的简单闭曲线的集合中,圆的周长最小。 几何中的运动:反射、平移、旋转。
复数方法、向量方法。 平面凸集、凸包及应用。
至于书,我建议你购买浙江大学出版社的高中数学竞赛专题讲座的平面几何那本,红色皮子主编马洪炎和虞金龙。这里面提到的所有你不知道的定理可在上述网址查到。
这是卓越网的这本书的购买地址:/view/587949.htm?func=retitle
几何:/taglist?tag=%BC%B8%BA%CE&tagfromview
下面是二试平面几何部分的考纲。建议你在“几何”那个网址中搜索一下相关定理着重学习。
平面几何
基本要求:掌握初中数学竞赛大纲所确定的所有内容。
补充要求:面积和面积方法。
几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。
几个重要的极值:到三角形三顶点距离之和最小的点--费马点。到三角形三顶点距离的平方和最小的点--重心。三角形内到三边距离之积最大的点--重心。
几何不等式。
简单的等周问题。了解下述定理:
在周长一定的n边形的集合中,正n边形的面积最大。
在周长一定的简单闭曲线的集合中,圆的面积最大。
在面积一定的n边形的集合中,正n边形的周长最小。
在面积一定的简单闭曲线的集合中,圆的周长最小。
几何中的运动:反射、平移、旋转。
复数方法、向量方法。
平面凸集、凸包及应用。
至于书,我建议你购买浙江大学出版社的高中数学竞赛专题讲座的平面几何那本,红色皮子主编马洪炎和虞金龙。这里面提到的所有你不知道的定理可在上述网址查到。这是卓越网的这本书的购买地址:/%E9%AB%98%E4%B8%AD%E6%95%B0%E5%AD%A6%E7%AB%9E%E8%B5%9B%E4%B8%93%E9%A2%98%E8%AE%B2%E5%BA%A7-%E5%B9%B3%E9%9D%A2%E5%87%A0%E4%BD%95-%E9%A9%AC%E6%B4%AA%E7%82%8E/dp/B0011F9JTG
事实上初中未涉及到的最多就是弦切角定理、切割线定理、射影定理,把这本书认真研究完再做奥赛难度的试题,多做多分析,实际上二试的平面几何就变得很简单了。做题的书满世界都是,自己随便找吧。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.579秒