太阳能光伏基础知识 1、太阳能电池发电原理 太阳电池是一种对光有响应并能将光能转换成电力的器件。
能产生光伏效应的材料有许多种,如:单晶硅,多晶硅, 非晶硅,砷化镓,硒铟铜等。它们的发电原理基本相同,现已晶体硅为例描述光发电过程。
P型晶体硅经过掺杂磷可得N型硅,形成P-N结。 当光线照射太阳电池表面时,一部分光子被硅材料吸收;光子的能量传递给了硅原子,使电子发生了越迁,成为自由电子在P-N结两侧集聚形成了电位差,当外部接通电路时,在该电压的作用下,将会有电流流过外部电路产生一定的输出功率。
这个过程的的实质是:光子能量转换成电能的过程。 2、晶体硅太阳电池的制作过程 "硅"是我们这个星球上储藏最丰富的材料之一。
自从上个世纪科学家们发现了晶体硅的半导体特性后,它几乎改变了一切,甚至人类的思维,20世纪末,我们的生活中处处可见"硅"的身影和作用,晶体硅太阳电池是近15年来形成产业化最快的。生产过程大致可分为五个步骤:a)提纯过程 b)拉棒过程 c)切片过程 d)制电池过程 e)封装过程. 3、太阳电池的应用 上世纪60年代,科学家们就已经将太阳电池应用于空间技术-----通信卫星供电,上世纪末,在人类不断自我反省的过程中,对于光伏发电这种如此清洁和直接的能源形式已愈加亲切,不仅在空间应用,在众多领域中也大显身手。
如:太阳能庭院灯,太阳能发电户用系统,村寨供电的独立系统,光伏水泵(饮水或灌溉),通信电源,石油输油管道阴极保护,光缆通信泵站电源,海水淡化系统,城镇中路标、高速公路路标等。在世纪之交前后期间,欧美等先进国家光伏发电并入城市用电系统及边远地区自然村落供电系统纳入发展方向。
太阳电池与建筑系统的结合已经形成产业化趋势。光伏电源系统的组成: 4、太阳电池基本性质 a) 光电转换效率η%:评估太阳电池好坏的重要因素。
目前:实验室η≈24%,产业化:η≈15%。 b)单体电池电压V:0.4V---0.6V 由材料物理特性决定。
c)填充因子FF%:评估太阳电池负载能力的重要因素。 阴影部分为负载面积,填充因子的数学表达形式:FF=(Im*Vm)/(Isc*Voc) 其中:Isc--短路电流, Voc--开路电压, Im--最佳工作电流, Vm--最佳工作电压; d)标准光强与环境温度 地面:AM1.5光谱,1000W/m2,t=25℃; e)温度对电池性质的影响 。
例如:在标准状况下,AM1.5光强, t=25℃ 某电池板输出功率测得为100Wp,如果电池温度升高至45℃时,则电池板输出功率就不到100Wp. 5.太阳能"光—电转换" 一束光照在半导体上和照在金属或绝缘体上效果截然不同。由于金属中自由电子如此之多,以致光引起的导电性能的变化完全可忽略。
绝缘体在很高温度下仍未能激发出更多的电子参加导电。而导电性能介于金属和绝缘体之间的半导体对体内电子的束缚力远小于绝缘体,可见光的光子能量就可以把它从束缚激发到自由导电状态,这就是半导体的光电效应。
当半导体内局部区域存在电场时,光生载流子将会积累,和没有电场时有很大区别,电场的两侧由于电荷积累将产生光电电压,这就是光生伏特效应,简称光伏效应。太阳电池就是利用这种效应制成的。
当太阳光照射到半导体上时,其中一部分被表面反射掉,其余部分被半导体吸收或透过。被吸收的光,当然有一些变成热,另一些光子则同组成半导体的原子价电子碰撞,于是产生电子—空穴对。
这样,光能就以产生电子—空穴对的形式转变为电能、如果半导体内存在P—n结,则在P型和n型交界面两边形成势垒电场,能将电子驱向n区,空穴驱向P区,从而使得n区有过剩的电子,P区有过剩的空穴,在P—n结附近形成与势垒电场方向相反光的生电场。光生电场的一部分除抵销势垒电场外,还使P型层带正电,n型层带负电,在n区与p区之间的薄层产生所谓光生伏打电动势。
若分别在P型层和n型层焊上金属引线,接通负载,则外电路便有电流通过。如此形成的一个个电池元件,把它们串联、并联起来,就能产生一定的电压和电流,输出功率。
制造太阳电池的半导体材料已知的有十几种,因此太阳电池的种类也很多。目前,技术最成熟,并具有商业价值的太阳电池要算硅太阳电池。
所以,将入射太阳光能转换成电能的半导体器件称为太阳能电池。它一般由两种不同导电类型的同质或异质半导体构成。
目前,在空间或地面获得应用的只有硅电池,研究得比较成熟的还有砷化镓电池、硫化镉电池。硅太阳能电池是1954年由美国皮尔逊等人首次制成,1958年首次应用在“先锋1号”卫星上。
1958年,我国亦开始研究太阳能电池,在1971年3月发射的科学实验卫星上首次应用,随着硅电池制造成本的逐年降低和技术的日益成熟,太阳能电池必将获得更广泛的应用。 6.太阳电池的应用的主要领域 (1)用户太阳能电源:(1)小型电源10-100W不等,用语边远无电地区如高原、海岛、牧区、边防哨所等军民生活用电,如照明、电视、收录机等;(2)3-5KW家庭屋顶并网发电系统;(3)光伏水泵:解决无电地区的深水井饮用、灌溉。
(2) 交通领域:如航标灯、交通/铁路信号灯、交通警示/标志灯、路灯、高空障碍。
我就是做光伏发电了,基本常识太多了 我就列举几个:1.光伏指的是光生伏特效应,一定条件下光能产生电压,从而产生电流,电能2.光伏发电是发的是直流电,一般都需要逆变器转化才能并到国家电网或者自己使用3.太阳能电池板主流的分为 晶硅和薄膜两大类,薄膜以汉能为代表,晶硅的有多晶硅和单晶硅之分,目前市场的太阳能电池板以晶硅类的为主,厂家较多,在此不列举了4,光伏发电主要有 :组件(太阳能电池板),逆变器,支架,三大部分组成5,光伏发电效率受 光照强度和温度影响很大,温度过高过低都会影响发电效率 25度为宜6,前几年做光伏的企业都赚翻了,但是今年受政策影响,会死一批光伏企业,7,光伏发电有很多形式,户用分布式,工商业屋顶,集中地面电站,农光互补,渔光互补,等等8.光伏发电的电价全国不一样,太多了,这里就不一一列举了,有问题,欢迎加关注,私信我。
光伏发电现在基本上是分为并网和离网两种。
首先说离网的吧。离网光伏发电所需要的设备有:太阳能电池板、太阳能充电控制器、蓄电池、离网逆变器;拿太阳能路灯举例吧,在白天时太阳能电池板给蓄电池充电,蓄电池作为储能元件,到晚上时由蓄电池供电给离网逆变器,离网逆变器输出220V工频50HZ的交流电,以此来给路灯供电。
太阳能电池板的功率不高的话,是不能直接带逆变器工作的。如果是大功率的电池板可以带动逆变器的话,有的情况下就可以省掉充电控制器和蓄电池,直接由太阳能电池板供电。
不过在这种情况下在一般在逆变器的前一级加上一个升压电路,把太阳能的电压提高,以便逆变器逆变成220V的交流电。 并网逆变器的话,基本元器件是和离网差不多的,只是把离网逆变器改变成并网逆变器。
并网逆变器要具有的功能有:最/大功率点跟踪,孤岛效应功能,还有锁相功能(保持逆变器输出电压波形和电网波形一致,不能超前或滞后)。先就这些,不明白再问吧。
太阳能(solar energy),是指太阳的热辐射能(参见热能传播的三种方式:辐射),主要表现就是常说的太阳光线。在现代一般用作发电或者为热水器提供能源。自地球上生命诞生以来,就主要以太阳提供的热辐射能生存,而自古人类也懂得以阳光晒干物件,并作为制作食物的方法,如制盐和晒咸鱼等。在化石燃料日趋减少的情况下,太阳能已成为人类使用能源的重要组成部分,并不断得到发展。太阳能的利用有光热转换和光电转换两种方式,太阳能发电是一种新兴的可再生能源。广义上的太阳能也包括地球上的风能、化学能、水能等。
光伏发电系统是利用太阳能电池直接将太阳能转换成电能的发电系统。它的主要部件是太阳能电池、蓄电池、控制器和逆变器。其特点是可靠性高、使用寿命长、不污染环境、能独立发电又能并网运行,受到各国企业组织的青睐,具有广阔的发展前景。
光伏发电系统(PV System)是将太阳能转换成电能的发电系统,利用的是光生伏特效应。光伏发电系统分为独立太阳能光伏发电系统、并网太阳能光伏发电系统和分布式太阳能光伏发电系统。
它的主要部件是太阳能电池、蓄电池、控制器和逆变器。其特点是可靠性高、使用寿命长、不污染环境、能独立发电又能并网运行,受到各国企业组织的青睐,具有广阔的发展前景。
据智研咨询统计:2012年全球光伏发电累计装机达到97GW,2012年全球新增装机30GW,中国新增装机占全球总量的16%以上 ,随着国家对清洁能源产业的大力扶持,我国光伏发电系统产业将迎来发展高峰期。
是指利用光伏电池的光生伏打效应,将太阳辐射能直接转换成电能的发电系统,包括光伏组件和配套部件(BOS)。
光伏组件封装设备在未来的发展主要朝着全自动化方向进行,这主要是由于在产品的稳定性与质量控制方面,自动化和人工相比,自动化的优势都要强于人工操作,并且自动化控制能够极大的释放劳动力,可以有效的降低封装环节的劳动力,那么人员也相应减少,直接的减少了生产成本,提高经济效益,所以光伏组件封装设备产业未来发展趋势必定向着全自动化方向发展。
在国外,自动化的流水线生产模式已成为了封装产业制造商的共识,这无疑给我国的光伏组件封装设备产业提供了一个方向,所以我国光伏组件封装设备也会向全自动化流水线发展。广东启天专业生产太阳能组件生产线,其中有串焊排版一体机,全自动视觉检测分选设备,全自动制绒上下料机,太阳能硅片装片机,非标自动化设备定制,在线式/离线式/太阳能电池片激光PERC设备,堆叠式制绒导片机,硅片数片机,全自动高速硅片装片机等重点设备。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.022秒