去百度文库,查看完整内容>
内容来自用户:扭摆的青春
第一章数与式
考点一、概念及分类1、实数按定义分类正整数
整数零
有理数负整数实数正分数
分数有限小数和无限循环小数
负分数
正无理数
无理数无限不循环小数
负无理数
2、实数按正负分类
正整数
正有理数
正实数正分数
正无理数
实数零负整数
负有理数
负分数
负实数
负无理数
在理解无理数时,要抓住“无限不循环”这一本质,归纳起来有四类:
(1)开方开不尽的数,如等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;
(3)有特定结构的数,如0.1010010001…等,一定要注意后面要带省略号;
(4)某些三角函数,如sin60o等
考点二、数轴、倒数、相反数、绝对值1、数轴定义:规定了原点、正方向和单位长度的直线叫做数轴。对应:实数和数轴上的点是一一对应的关系。2、倒数
如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。a的倒数为。3、相反数:如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。相反数等于本身的数是0,任何数都有相反数。a的相反数为-a。
4、绝对值
一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a(4.考点三、因式分解(1((考点一、平面直角坐标系点(3如果自变量的取值范围是反过来,解一元二次方程(1一条线段可用它的端点的两个大写字母
为形式化公理方法。
公理体系的合理性和公理化方法提出三个基本的要求: (1)协调性要求。 (2)独立性要求。
(3)完备性要求。 (二)几何的统一化 F· 克莱因是近代数学史中非常有名的数学家,他的重要贡献之一,就是透过数学结构的方法为众多几何学分支找到一种内在的结构规律。
表面互不相干的几何学被 F·克莱因用变换群联系到一起,同时变换群的任何一个分类也对应几何学的一种分类。 F· 克莱因用群的结构与理论统一几何学的方法,是抽象结构方法的重要成就,是数学第二次抽象威力的具体体现。
模型模式的抽象 粗略地说,数学模型是针对或参照某种事物系统的特征或数量关系,采用形式化数学语言,概括地或近似地表述出来的一种数学建构。
所谓数学建构,是指使用数学概念、数学符号、数学语言等表述出来的被研究对象的纯关系结构。“纯”是指已扬弃了一切与关系无本质联系的属性,只保留与研究目的有关的本质特征。
具体地说,数学模型有广义的解释和狭义的解释。 (一)广义解释 数学模型是从现实世界中抽象出来的,是客观事物的某些属性的一种近似反映。
(二)狭义解释 数学模型是将具体属性抽象出来构成一种特定的数学关系结构,只有那些反映特定问题或特定事物系统的数学结构才叫数学模型。 数学模型的抽象过程 具体的抽象过程我们可以总结为如下几个关键步骤: 首先,分析问题的各种关系,全面地掌握了问题中各种因素之间的联系。
其次,确定了各关系之间的本质属性。 第三,建立一笔画的数学模型,第四,把数学模型返回到实际问题之中。
检验正确,那么这个抽象的数学模型就可以广泛地加以应用。 中小学数学常见数学模型的抽象 (一)经济数学模型的抽象 在人类的生产生活中,有许多实际问题可以用初等数学来解决,对这些具体问题的抽象处理就形成了许多有关这些方面的数学模型。
这些问题主要表现在工程进度、人口增长、收入变等方面。这些问题运用的数学工具大多是代数方程、指数函数以及其它相关的函数概念。
这一类的数学模型在现实生活中随处可见,中小学的数学教学应以这些为例深入浅出地抽象、构造及运用这些模型。 (二)运动数学模型的抽象 一些事物在运动中表现出速度、加速度、时间、距离之间的关系,这类问题构成了带有运动特征的数学模型。
(三)逻辑程序数学模型的抽象 逻辑推理形式一直是数学运用的最基本的思想方法,从数学模型的抽象角度把它看作是一种数学方法和结构模型还是近代才引起人们重视的。对于初等数学教育而言,我们以前的数学教育只是在学习几何知识时才开始强化逻辑推理方面的教育,这种数学教育也由于对定义、定理的推导而忽视对逻辑程序自身的注意。
近年来,由于计算机的迅速普及使得逻辑程序方面(或算法)的教育就显得越来越重要。 结合初中教学实际谈一谈你 对数学抽象的理解。
数学抽象的教学应当直接指向学生在与数学相关问题上的一般思维水平方面的发展。事实上,义务教育阶段的数学教育是一种公民教育,它给学生带去的绝不仅仅是会解更多的数学题了。
这些学生的未来会遇到不同的挑战——一些人需要学习或研究更多的数学,对他们而言,是否能够“思考数学”非常重要;另一些人(他们是受教育的学生中的绝大多数)就业以后基本上不需要解纯粹的数学题(除了参加数学考试),对他们而言,“思考数学”是一种需要,但更多的或许是能够进行“数学的思考”,即在面临各种问题情境(特别是非数学问题)时,能够从数学的角度去思考问题、能够发现其中所存在的数学现象、并将之抽象为数学问题,运用数学的知识与方法去解决问题。对所有的未来公民来说,抽象思维和形象思维水平,归纳推理与演绎推理能力等都是不可缺少的。
这个教学目标的实现也不能仅仅通过研究“纯粹抽象”的数学现象来进行,而应当在研究多种现象与问题(数学的、非数学的)的过程中逐步完成。具体说来,就是让学生经历运用数学符号和图形描述现实世界的过程,建立初步的数感和符号感,发展数学抽象思维。
教学的主要目的在于使学生能够用数学的语言去刻画现实世界,去发现隐藏在具体事物背后的一般性规律。相对于不同学段的学生而言着重点不一样: 对第一学段的学生来说,能够用数和简单的图表刻画一些现实生活中的简单现象,就是目标;对第二学段的学生而言,应当包括既能够用数和简单的图表刻画一些现实生活中的现象,还应当包含对某些数字信息做出合理的解释;对于第三学段的学生来说,除去在较复杂的层面上能够完成前面的任务,重点应当是能够用各种数学关系(方程、不等式、函数等)去刻画具体问题,建立合适的数学模型。
第七章 数学推理 思维模式下对推理的理解 哲学对推理的理解为:推理是从一个或几个判断推出一个新的判断的思维形式。常见的推理有归纳推理,演绎推理和类比推理。
推理模式下对推理的理解 对于数学而言,本质上有两种推理模式,一种是演绎推理,一种是归纳推理。 基本推理是指由一个命题或者几个命题出发,得到另一个命题的思维路径,其中所谓的命题是指一种可以肯定或。
初中数学的基础知识高中数学都需要。
初中数学内容: 代数部分: 1、有理数、无理数、实数。 2、整式、分式、二次根式。
3、一元一次方程、一元二次方程、二(三)元一次方程组、二元二次方程组、分式方程、一元一次不等式。 4、函数(一次函数、二次函数、反比例函数)。
5、统计初步。 几何部分: 1、线段、角。
2、相交线、平行线。 3、三角形。
4、四边形。 5、相似形。
6、圆。 高中数学是全国高中生学习的一门学科。
包括《集合与函数》《三角函数》《不等式》《数列》《复数》《排列、组合、二项式定理》《立体几何》《平面解析几何》等部分。 高中数学知识框架: 在必修一里面主要学习了集合,包含集合的含义与表示,集合的基本关系,集合的基本运算;在剩下的几个章节则学习了几个重要的基本初等函数 在必修二里面则是学习了立体几何初步:包含简单几何体与简单多面体的三视图,空间图形的位置关系。
部分规则空间几何体的体积与表面积,第二章以数形结合的形式向大家介绍了圆和直线的性质,理科生则深入学习了空间直角坐标系 在必修三部分是对简单的概率论与数理统计进行了学习。和算法初步进行了学习。
必修四开端又学习了另一种基本初等函数--三角函数,在高中阶段主要是学习了,正弦,余弦,正切三个三角函数的性质与图像及三者之间的关系。包括三角函数限,弧度制,诱导公式等。
第二章则是学习了平面向量这一数学工具,这一章学习了向量的表示,向量的模和单位化,数量积和简单应用。在第三章又深入学习了三角函数的半角公式,和角,差角公式,2倍角公式。
在进一步延伸后又学习了降幂公式。 必修五第一章主要讲了等差与等比数列的性质,通项公式与前N项和的运算,第二章属平面解析几何的内容,主要介绍了正弦,余弦定理,第三章主要学习了不等式的性质与概念与LP问题初步(图解法)。
选修2-1第一章是常用逻辑用语,主要讲述了充分条件,必要条件和“或,且,非”等逻辑量词,在第二章节是又进一步讲述了空间解析几何与向量代数,理科生又多学习了二面角定理。第三章则是介绍了圆锥曲线有关知识,包括椭圆,双曲线,抛物线的定义性质,图像等。
选修2—2:第一章是推理与证明:介绍了归纳推理与类比推理,综合法,分析法,反证法,和归纳法。第二章和第三章则是导数的有关性质与运用。
第四章介绍了简单的微积分性质与运用(曲边梯形面积和与简单几何体体积);第五章介绍了数系的扩充。主要介绍了复数的表示,性质,运算等 选修2-3:主要为理科生学习,第一章为排列与组合,主要学习了科学技术原理,排列,组合和二项式定理。
第二章则介绍了二项分布,正态分布等常见的概率分布,第三章则是介绍了独立性检验与简单的线性回归分析。
一、紧扣大纲,精心编制复习计划
初中数学内容多而杂,其基础知识和基本技能又分散覆盖在三年的教科书中,学生往往学了新的,忘了旧的。因此,必须依据大纲规定的内容和系统化的知识要点,精心编制复习计划。计划的编写必须切合学生实际。可采用基础知识习题化的方法,根据平时教学中掌握的学生应用知识的实际,编制一份渗透主要知识点的测试题,让学生在规定时间内独立完成。然后按测试中出现的学生难以理解、遗忘率较高且易混易错的内容,确定计划的重点。复习计划制定后,要做好复习课例题的选择、练习题配套作业筛眩教师制定的复习计划要交给学生,并要求学生再按自己的学习实际制定具体复习规划,确定自己的奋进目标。
二、追本求源,系统掌握基础知识总
复习开始的第一阶段,首先必须强调学生系统掌握课本上的基础知识和基本技能,过好课本关。对学生提出明确的要求:①对基本概念、法则、公式、定理不仅要正确叙述,而且要灵活应用;②对课本后练习题必须逐题过关;③每章后的复习题带有综合性,要求多数学生必须独立完成,少数困难学生可在老师的指导下完成。
三、系统整理,提高复习效率
总复习的第二阶段,要特别体现教师的主导作用。对初中数学知识加以系统整理,依据基础知识的相互联系及相互转化关系,梳理归类,分块整理,重新组织,变为系统的条理化的知识点。例如,初三代数可分为函数的定义、正反比例函数、一次函数;一元二次方程、二次函数、二次不等式;统计初步三大部分。几何分为4块13线:第一块为以解直角三角形为主体的1条线。第二块相似形分为3条线:(1)成比例线段;(2)相似三角形的判定与性质。(3)相似多边形的判定与性质;第三块圆,包含7条线:(4)圆的性质;(5)直线与圆;(6)圆与圆;(7)角与圆;(8)三角形与圆;(9)四边形与圆;(10)多边形与圆。第四块是作图题,有2条线:(11)作圆及作圆的内外公切线等;(12)点的轨迹。这种归纳总结对程度差别不大、素质较好的班级可在教师的指导下师生共同去作,即由学生“画龙”,教师“点睛”。中等及其以下班级由教师归类,对比讲解,分块练习与综合练习交叉进行,使学生真正掌握初中数学教材内容。
四、集中练习,争取最佳效果
梳理分块,把握教材内容之后,即开始第三阶段的综合复习。这个阶段,除了重视课本中的重点章节之外,主要以反复练习为主,充分发挥学生的主体作用。通常以章节综合习题和系统知识为骨干的综合练习题为主,适当加大模拟题的份量。对教师来说,这时主要任务是精选习题,精心批改学生完成的练习题,及时讲评,从中查漏补缺,巩固复习成效,达到自我完善的目的。精选综合练习题要注意两个问题:第一,选择的习题要有目的性、典型性和规律性。如,函数的取值范围可选择如下一组例题:
(2)y=13-2x
(3)y=3x+2x-1
(4)y=1x+1-1
(5)y=x+2x-2第二,习题要有启发性、灵活性和综合性。如,角平分线定理的证明及应用,圆的证明题中圆周角、圆心角、弦心角、圆幂定理、射影定理等的应用都是综合性强且是重点应掌握的题目,都要抓住不放,抓出成效。
我认识到数学概念是数学定理,公式的依据,学生如果对数学概念弄不清,那么数学运算、推理就会无法进行下去。所以教学数学概念是教好数学课的重要一环。而要弄清数学概念,不但要从正面去讲,还要从反面,侧面去弄清它。例如:初二平面几何讲“平行线”概念时,教师以黑板相对两边为例,它们都是在同一平面内,若把它们看作是线段,则无论怎样延长也不会相交,这样就把平行线定义归纳为:“同一平面内”,“不相交的两条直线。”为了讲清“同一平面内”,教师再以反面问学生:教室中挂吊扇的铁管(垂直于地面的)与黑板的边线也不会相交,但是不是平行线呢?学生回答:不是平行线,因为它们不在同一平面内。从而突出了,必须是同一平面内,而且要不相交。我认为这样从正、反两方面讲清概念,学生印象较深刻。
二、查漏补缺,弥补学生的知识缺陷。
我意识到学生起点较低,知识缺陷大,如不及时给学生弥补知识缺陷,将会失去学习信心,学不下去。我的做法是:
1、初中一年级,对新生进行摸底测验,了解学生在小学学过的数学知识,哪些掌握较差。
2、结合新课,弥补学生的知识缺陷。例如,学习有理数运算时,结合与学生补分数通分,分数四测运算的知识。学习平面几何的相似形时,与学生补有关比例的知识。
3、对一些基础较差的学生,利用课余时间与之补课。
4、在作业中或测验中发现学生的知识缺陷,不轻易放过,要及时给学生指出,并要求学生重做。
三、充分运用启发式教学法,激发学生学习数学的积极性,提高自学数学的能力。
在教学课中,是采用启发式教学法还是注入式教学法是大不相同。采用启发式,能使学生积极主动地获取知识,充分调动学生的学习积极性和主动性。
怎么启发学生的积极思维呢?我认为,要结合教学内容恰当地提出问题,引导学生去积极思考寻求正确的答案。教师可以提出问题,让学生去思考、回答,也可以教师自问自答。但要防止提出的问题过于简单,学生只回答“是”或“不是”,这是达不到启发思维目的的。例如:初二平面几何讲“三角形内角和定理”关键是启发学生过三角形的某个顶点作对边的平行线,提出:要证明三个内角和等于180o,有什么办法呢?我们学过什么角等于180o的?(学生回答:平角)。因此就要想办法把这三角形的三个内角拼成一个平角,学生自然就会想起作平行线了。
我还注意在课堂上培养学生自学教学书的能力,指导学生在课前或堂上阅读课文。同时编印适量的课外练习题,鼓励学生在课外主动多做一些练习题,使学生学得积极主动。
四、精讲多练,加强课堂练习,提高运算能力。
我在讲课中,尽量做到抓住关键问题精讲,留出一定时间让学生课堂练习;有时则讲练结合,边讲边练。对于例题,我也不是全部讲,有些例题可以在堂上通过学生练习后再讲。这样,学生动手练习后,教师再归纳小结,指出学生练习中出现的错误,印象较深刻,也及时纯正了学生易犯的错误。
五、交代解题规律,教给学生思考问题的方法。
我认为:在讲例题时,一定要交代解题规律,交给学生解题的锁匙。
例如:列方程解应用题是数学教学的一个难点,我在教列方程解应用题时,反复告诉学生:要抓住量与量的相等关系来列等式。对于行程问题,主要是利用距离、速度、时间三者关系。根据题意,利用距离的相等关系或时间的相等关系来列出等式。
又如,讲二元二次方程组解法时,告诉学生:主要是消元或降次。可想办法运用加、减法消去一个未知数(消元)或想办法消去二次项,或分解成一次因式的乘积(降次),如果是缺一次项的,可以想法消去常数项,变为二次齐次式来分解因式。
其他教学内容,也各有各的规律,教师必须告诉学生,让学生掌握解题规律。
六、认真批改学生作业,发现问题及时评讲,纠正作业中普遍性错误。
虽然批改作业是一件十分费时的事情,要花费不少精力,但我考虑到学生基础较差,作业错误较多,为了对学生知识质量负责,花一定时间去批改学生的作业还是必要的,因此,我做到全批全改学生作业,在批改中发现问题及时评讲。同时还采用一些有效措施来督促学生依时缴交作业,对不交作业的学生及时教育。
班级里边总是有很多的聪明人,但是他们的数学却是他们的黑洞,而那些学习好的学生我也没见的他们比谁聪明多少了,那为什么会有学习好和差呢?为什么别人总是学习好的呢?那是因为他们用对了学习数学的方式方法了,所以提高分数会很快.那么怎么样学初中数学就能超过那些比自己学习好的人了呢?
初中数学目录
数学可是幼儿园要一直学到大学的科目呢,无论如何都是不能放弃的呢!俗话说得好呢,"重复是记忆之母",这都是表达温习功课对于学好数学的重要性呢,就像我的一共而老师曾经说过每天把自己学的东西在睡觉之前在脑子里过一遍,就当是过电影了一样,想不起来的东西记住第二天再问老师或者是同学,然后第三天,第四天皆是如此,这样你学好数学就已经完成一大半了.
接下来的一半就是怎么样学初中数学的最关键的部分了.因为在平时的学习中,我们自己应该学会怎样归纳知识点,按照题型来归纳方式方法,解题的技巧,下面来看一下吧.
第一点:熟读课本,要课本看的透透的,首先你要看看目录,清楚这本书都准备讲什么,目录只是知识框架的一种最最基础的东西了,只要清楚了目录,怒也就明白大概这本书讲的是什么了,其次要按照每个章节每个章节的看,清楚的分开知识点,难点,最后都归纳在一起,也要看看书本当中的例题,要学会举一反三,一种题型的题目必须要做到全会,而有的人连书都不看,又怎么样学初中数学呢?
第二点:学习到某一个知识的时候,就把这个知识点所涉及到的题型全部从简单到困难都扩展凯,从简单的开始做,一直做到不会的题目,好好的请教别人在做,一直做到最后,彻底弄懂所有的题目,特别是对于特殊的题型和一般常见的,都需要在脑子当中刻画出来,不能忘记.
第三点:把一些你经常错的题目全部都整理出来,看看都是属于哪几种题型,把它弄懂,在以后的考试当中就不会在出现错误了.
辅导数学作业
第四点:数学所学习的公式都是必须要记住的,因为会在题目中用到,而且很关键,所以每天都要背一遍,在睡前在背一遍,第二天早上醒来在背一遍,以此类推,永久就不会忘记了.
最后,要仔细的对待数学这门科目,这可是能决定你以后上哪所大学的关键呢!怎么样学初中数学的方式方法到这里就结束了,希望同学们可以按照上边的方法做一遍,是会收获到很打的惊喜哦!
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:4.008秒