1过两点有且只有一条直线 2 两点之间线段最短3 同角或等角的补角相等 4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行 10 内错角相等,两直线平行11 同旁内角互补,两直线平行 12两直线平行,同位角相等13 两直线平行,内错角相等 14 两直线平行,同旁内角互补15 定理 三角形两边的和大于第三边16 推论 三角形两边的差小于第三边17 三角形内角和定理 三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理 有两角和它们的夹边对应相等的两个三角形全等24 推论 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理 有三边对应相等的两个三角形全等26 斜边、直角边公理 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理 等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48定理 四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)*180°51推论 任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论 夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a*b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理 等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 。
初中数学基础知识大全:直角坐标系与点的位置
1. 直角坐标系中,点A(3,0)在y轴上。
2. 直角坐标系中,x轴上的任意点的横坐标为0。
3. 直角坐标系中,点A(1,1)在第一象限。
4. 直角坐标系中,点A(-1,1)在第二象限。
5. 直角坐标系中,点A(-1,-1)在第三象限。
6. 直角坐标系中,点A(1,-1)在第四象限。
初中数学基础知识大全:特殊三角函数值
1.cos30°=√3/2
2.sin2 60°+ cos2 60°= 1
3.2sin30°+ tan45°= 2
4.tan45°= 1
5.cos60°+ sin30°= 1
初中数学基础知识大全:圆的基本性质
1.半圆或直径所对的圆周角是直角。
2.任意一个三角形一定有一个外接圆.
3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
4.在同圆或等圆中,相等的圆心角所对的弧相等。
5.同弧所对的圆周角等于圆心角的一半。
6.同圆或等圆的半径相等。
7.过三个点一定可以作一个圆。
8.长度相等的两条弧是等弧。
9.在同圆或等圆中,相等的圆心角所对的弧相等。
10.经过圆心平分弦的直径垂直于弦。
一、函数
10、点 关于x轴的对称点是 ,关于y轴的对称点是 ;关于原点的对称点是
11,两点 距离:
在x轴上两点: 在y轴上两点:
12、一次函数 ,b叫截距,b可以为任何数。
例: = 的截距是3
13、二次函数:
(1) 一般式: 对称轴是
(2) 顶点式: 的对称轴是 -m,k)
(3) 交点式: ,其中( ),( )是抛物线与x轴的交点
二、统计初步:
14、中位数:将一组数据按照从小到大依次排列,处在最中间的一个数据(或中间两个数据的平均数)
15、方差:
16、频率= ,总数= ,频数=总数*频率
所有的频率之和等于1,即所有的小长方形的面积之和等于1。
晕,打了我10来个小时·~·#~!·谢谢大家给面子看啊~ |原创|复习 一、数与代数 A:数与式:1:有理数 有理数:①整数→正整数/0/负整数 ②分数→正分数/负分数 数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。 ③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。 ④数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。 绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他本身/负数的绝对值是他的相反数/0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。 减法: 减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。 除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。 乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。 2:实数 无理数:无限不循环小数叫无理数 平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。 立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数/0的立方根是0/负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点来表示。 3:代数式 代数式:单独一个数或者一个字母也是代数式。
合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。
③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。 4:整式与分式 整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。 幂的运算:AM。
AN=A(M+N) (AM)N=AMN (AB)N=AN。BN 除法一样。
A0=1,A-P=1/AP 整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。 公式两条:平方差公式/完全平方公式 整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。 分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式 方法:提公因式法/运用公式法/分组分解法/十字相乘法 分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。 分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。 加减法:①同分母的分式相加减,分母不变,把分子相加减。
②异分母的分式先通分,化为同分母的分式,再加减。 分式方程:①分母中含有未知数的方程叫分式方程。
②使方程的分母为0的解称为原方程的增根。 B:方程与不等式 1:方程与方程组 一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。
②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。 解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。 二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,。
第一章 数与式
1 正数与负数
2 有理数和数轴
3 相反数与绝对值
4 a+b=+-(|a|+|b|)
5 a+b=b+a,(a+b)+c=a+(b+c)
6 a-b=a+(-b)
7 ab=+-|a|·|b|,a·0=0,ab=ba,(ab)c=a(bc),(a+b)c=ac+bc
8 a*b=a*1/b(b=0)
9 a·a……a=an(n为正整数)
10 a*10n
11 单项式:axmyn
12 多项式:A+B+C
13 合并同类项:axn+-bxn=(a+-b)xn
14 am·an=am+n(m,n都是正整数)
15 (am)n=amn(m,n都是正整数)
16 (a·b)n=anbn(n为正整数)
17 单项式乘法则
18 单项式与多项式相乘法则
19 多项式相乘法则
20 (a+b)(a-b)=a2-b2
21 (a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2
22 am/an=am-n(a=0,m,n都是正整数,且M>n)
23 单项式除以单项式法则
24 多项式除以单项式的法则
25 ma+mb+mc=m(a+b+c)
……
第二章 方程和不等式
第三章 函数及其图象
第四章 三角形
第五章 四边形
第六章 圆形
第七章 统计与概率初步
初中数学的基础知识高中数学都需要。
初中数学内容: 代数部分: 1、有理数、无理数、实数。 2、整式、分式、二次根式。
3、一元一次方程、一元二次方程、二(三)元一次方程组、二元二次方程组、分式方程、一元一次不等式。 4、函数(一次函数、二次函数、反比例函数)。
5、统计初步。 几何部分: 1、线段、角。
2、相交线、平行线。 3、三角形。
4、四边形。 5、相似形。
6、圆。 高中数学是全国高中生学习的一门学科。
包括《集合与函数》《三角函数》《不等式》《数列》《复数》《排列、组合、二项式定理》《立体几何》《平面解析几何》等部分。 高中数学知识框架: 在必修一里面主要学习了集合,包含集合的含义与表示,集合的基本关系,集合的基本运算;在剩下的几个章节则学习了几个重要的基本初等函数 在必修二里面则是学习了立体几何初步:包含简单几何体与简单多面体的三视图,空间图形的位置关系。
部分规则空间几何体的体积与表面积,第二章以数形结合的形式向大家介绍了圆和直线的性质,理科生则深入学习了空间直角坐标系 在必修三部分是对简单的概率论与数理统计进行了学习。和算法初步进行了学习。
必修四开端又学习了另一种基本初等函数--三角函数,在高中阶段主要是学习了,正弦,余弦,正切三个三角函数的性质与图像及三者之间的关系。包括三角函数限,弧度制,诱导公式等。
第二章则是学习了平面向量这一数学工具,这一章学习了向量的表示,向量的模和单位化,数量积和简单应用。在第三章又深入学习了三角函数的半角公式,和角,差角公式,2倍角公式。
在进一步延伸后又学习了降幂公式。 必修五第一章主要讲了等差与等比数列的性质,通项公式与前N项和的运算,第二章属平面解析几何的内容,主要介绍了正弦,余弦定理,第三章主要学习了不等式的性质与概念与LP问题初步(图解法)。
选修2-1第一章是常用逻辑用语,主要讲述了充分条件,必要条件和“或,且,非”等逻辑量词,在第二章节是又进一步讲述了空间解析几何与向量代数,理科生又多学习了二面角定理。第三章则是介绍了圆锥曲线有关知识,包括椭圆,双曲线,抛物线的定义性质,图像等。
选修2—2:第一章是推理与证明:介绍了归纳推理与类比推理,综合法,分析法,反证法,和归纳法。第二章和第三章则是导数的有关性质与运用。
第四章介绍了简单的微积分性质与运用(曲边梯形面积和与简单几何体体积);第五章介绍了数系的扩充。主要介绍了复数的表示,性质,运算等 选修2-3:主要为理科生学习,第一章为排列与组合,主要学习了科学技术原理,排列,组合和二项式定理。
第二章则介绍了二项分布,正态分布等常见的概率分布,第三章则是介绍了独立性检验与简单的线性回归分析。
1.就是正整数和零即自然数。也就是除负整数外的所有整数
2.整数是表示物体个数的数,0表示有0个物体
3.有理数是整数和分数的统称,一切有理数都可以化成分数的形式。
4.实数包括有理数 零 无理数.
5.在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。
6.像1 2 3 4 5 等等之类的 不含零
1.如0 1 2 3 4 5等等。
2.-1 -2 -3 -4 1 2 3 4等。
3.有理数包括整数和分数
4.实数就是有理数 无理数 0
5.除1之外的 2 3 5 7 11 13 17 19等
6.1 2 3 4 5 6 7 8 9等等~~
PS:你读几年级啊,这些是基本概念诶- -
一、课内重视听讲,课后及时复习。
新知识的接受,数学能力的培养主要在课堂上进行,所以要特点重视课内的学习效率,寻求正确的学习方法。上课时要紧跟老师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲有哪些不同。
特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,庆尽量回忆而不采用不清楚立即翻书之举。
认真独立完成作业,勤于思考,从某种意义上讲,应不造成不懂即问的学习作风,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。
二、适当多做题,养成良好的解题习惯。 要想学好数学,多做题目是难免的,熟悉掌握各种题型的解题思路。
刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。
在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。
实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。
三、调整心态,正确对待考试。 首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。
调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。
在考试前要做好准备,练练常规题,把自己的思路展开,切忌考前去在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平正常甚至超常发挥。
由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。
为形式化公理方法。
公理体系的合理性和公理化方法提出三个基本的要求: (1)协调性要求。 (2)独立性要求。
(3)完备性要求。 (二)几何的统一化 F· 克莱因是近代数学史中非常有名的数学家,他的重要贡献之一,就是透过数学结构的方法为众多几何学分支找到一种内在的结构规律。
表面互不相干的几何学被 F·克莱因用变换群联系到一起,同时变换群的任何一个分类也对应几何学的一种分类。 F· 克莱因用群的结构与理论统一几何学的方法,是抽象结构方法的重要成就,是数学第二次抽象威力的具体体现。
模型模式的抽象 粗略地说,数学模型是针对或参照某种事物系统的特征或数量关系,采用形式化数学语言,概括地或近似地表述出来的一种数学建构。
所谓数学建构,是指使用数学概念、数学符号、数学语言等表述出来的被研究对象的纯关系结构。“纯”是指已扬弃了一切与关系无本质联系的属性,只保留与研究目的有关的本质特征。
具体地说,数学模型有广义的解释和狭义的解释。 (一)广义解释 数学模型是从现实世界中抽象出来的,是客观事物的某些属性的一种近似反映。
(二)狭义解释 数学模型是将具体属性抽象出来构成一种特定的数学关系结构,只有那些反映特定问题或特定事物系统的数学结构才叫数学模型。 数学模型的抽象过程 具体的抽象过程我们可以总结为如下几个关键步骤: 首先,分析问题的各种关系,全面地掌握了问题中各种因素之间的联系。
其次,确定了各关系之间的本质属性。 第三,建立一笔画的数学模型,第四,把数学模型返回到实际问题之中。
检验正确,那么这个抽象的数学模型就可以广泛地加以应用。 中小学数学常见数学模型的抽象 (一)经济数学模型的抽象 在人类的生产生活中,有许多实际问题可以用初等数学来解决,对这些具体问题的抽象处理就形成了许多有关这些方面的数学模型。
这些问题主要表现在工程进度、人口增长、收入变等方面。这些问题运用的数学工具大多是代数方程、指数函数以及其它相关的函数概念。
这一类的数学模型在现实生活中随处可见,中小学的数学教学应以这些为例深入浅出地抽象、构造及运用这些模型。 (二)运动数学模型的抽象 一些事物在运动中表现出速度、加速度、时间、距离之间的关系,这类问题构成了带有运动特征的数学模型。
(三)逻辑程序数学模型的抽象 逻辑推理形式一直是数学运用的最基本的思想方法,从数学模型的抽象角度把它看作是一种数学方法和结构模型还是近代才引起人们重视的。对于初等数学教育而言,我们以前的数学教育只是在学习几何知识时才开始强化逻辑推理方面的教育,这种数学教育也由于对定义、定理的推导而忽视对逻辑程序自身的注意。
近年来,由于计算机的迅速普及使得逻辑程序方面(或算法)的教育就显得越来越重要。 结合初中教学实际谈一谈你 对数学抽象的理解。
数学抽象的教学应当直接指向学生在与数学相关问题上的一般思维水平方面的发展。事实上,义务教育阶段的数学教育是一种公民教育,它给学生带去的绝不仅仅是会解更多的数学题了。
这些学生的未来会遇到不同的挑战——一些人需要学习或研究更多的数学,对他们而言,是否能够“思考数学”非常重要;另一些人(他们是受教育的学生中的绝大多数)就业以后基本上不需要解纯粹的数学题(除了参加数学考试),对他们而言,“思考数学”是一种需要,但更多的或许是能够进行“数学的思考”,即在面临各种问题情境(特别是非数学问题)时,能够从数学的角度去思考问题、能够发现其中所存在的数学现象、并将之抽象为数学问题,运用数学的知识与方法去解决问题。对所有的未来公民来说,抽象思维和形象思维水平,归纳推理与演绎推理能力等都是不可缺少的。
这个教学目标的实现也不能仅仅通过研究“纯粹抽象”的数学现象来进行,而应当在研究多种现象与问题(数学的、非数学的)的过程中逐步完成。具体说来,就是让学生经历运用数学符号和图形描述现实世界的过程,建立初步的数感和符号感,发展数学抽象思维。
教学的主要目的在于使学生能够用数学的语言去刻画现实世界,去发现隐藏在具体事物背后的一般性规律。相对于不同学段的学生而言着重点不一样: 对第一学段的学生来说,能够用数和简单的图表刻画一些现实生活中的简单现象,就是目标;对第二学段的学生而言,应当包括既能够用数和简单的图表刻画一些现实生活中的现象,还应当包含对某些数字信息做出合理的解释;对于第三学段的学生来说,除去在较复杂的层面上能够完成前面的任务,重点应当是能够用各种数学关系(方程、不等式、函数等)去刻画具体问题,建立合适的数学模型。
第七章 数学推理 思维模式下对推理的理解 哲学对推理的理解为:推理是从一个或几个判断推出一个新的判断的思维形式。常见的推理有归纳推理,演绎推理和类比推理。
推理模式下对推理的理解 对于数学而言,本质上有两种推理模式,一种是演绎推理,一种是归纳推理。 基本推理是指由一个命题或者几个命题出发,得到另一个命题的思维路径,其中所谓的命题是指一种可以肯定或。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:4.796秒