小学数学复习考试知识点汇总一、小学生数学法则知识归类(一)笔算两位数加法,要记三条1、相同数位对齐;2、从个位加起;3、个位满10向十位进1。
(二)笔算两位数减法,要记三条1、相同数位对齐;2、从个位减起;3、个位不够减从十位退1,在个位加10再减。(三)混合运算计算法则1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算;2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减;3、算式里有括号的要先算括号里面的。
(四)四位数的读法1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推;2、中间有一个0或两个0只读一个“零”;3、末位不管有几个0都不读。(五)四位数写法1、从高位起,按照顺序写;2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。
(六)四位数减法也要注意三条1、相同数位对齐;2、从个位减起;3、哪一位数不够减,从前位退1,在本位加10再减。(七)一位数乘多位数乘法法则1、从个位起,用一位数依次乘多位数中的每一位数;2、哪一位上乘得的积满几十就向前进几。
(八)除数是一位数的除法法则1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数;2、除数除到哪一位,就把商写在那一位上面;3、每求出一位商,余下的数必须比除数小。(九)一个因数是两位数的乘法法则1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐;2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐;3、然后把两次乘得的数加起来。
(十)除数是两位数的除法法则1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小,2、除到被除数的哪一位就在哪一位上面写商;3、每求出一位商,余下的数必须比除数小。(十一)万级数的读法法则1、先读万级,再读个级;2、万级的数要按个级的读法来读,再在后面加上一个“万”字;3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
(十二)多位数的读法法则1、从高位起,一级一级往下读;2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字;3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。(十三)小数大小的比较比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。
(十四)小数加减法计算法则计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。(十五)小数乘法的计算法则计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。
(十六)除数是整数除法的法则除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。(十七)除数是小数的除法运算法则除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。
(十八)解答应用题步骤1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么; 2、确定每一步该怎样算,列出算式,算出得数;3、进行检验,写出答案。(十九)列方程解应用题的一般步骤1、弄清题意,找出未知数,并用X表示;2、找出应用题中数量之间的相等关系,列方程;3、解方程;4、检验、写出答案。
(二十)同分母分数加减的法则同分母分数相加减,分母不变,只把分子相加减。(二十一)同分母带分数加减的法则带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。
(二十二)异分母分数加减的法则异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。(二十三)分数乘以整数的计算法则分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。
(二十四)分数乘以分数的计算法则分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。(二十五)一个数除以分数的计算法则一个数除以分数,等于这个数乘以除数的倒数。
(二十六)把小数化成百分数和把百分数化成小数的方法把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;把百分数化成小数,把百分号去掉,同时小数点向左移动两位。(二十七)把分数化成百分数和把百分数化成分数的方法把分数化成百分数,通常先把分数化成小数(除不尽通常保留三位小数),再把小数化成百分数;把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。
二、小学数学口决定义归类1、什么是图形的周长?围成一个图形所。
小学一年级 九九乘法口诀表。
学会基础加减乘。 小学二年级 完善乘法口诀表,学会除混合运算,基础几何图形。
小学三年级 学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。
小学四年级 线角自然数整数,素因数梯形对称,分数小数计算。 小学五年级 分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。
小学六年级 比例百分比概率,圆扇圆柱及圆锥。 必背定义、定理公式 三角形的面积=底*高÷2。
公式 S= a*h÷2 正方形的面积=边长*边长 公式 S= a*a 长方形的面积=长*宽 公式 S= a*b 平行四边形的面积=底*高 公式 S= a*h 梯形的面积=(上底+下底)*高÷2 公式 S=(a+b)h÷2 内角和:三角形的内角和=180度。 长方体的体积=长*宽*高 公式:V=abh 长方体(或正方体)的体积=底面积*高 公式:V=abh 正方体的体积=棱长*棱长*棱长 公式:V=aaa 圆的周长=直径*π 公式:L=πd=2πr 圆的面积=半径*半径*π 公式:S=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh 圆锥的体积=1/3底面*积高。公式:V=1/3Sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。 读懂理解会应用以下定义定理性质公式 一、算术方面 1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。 3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。 5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)*5=2*5+4*5 6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。 7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。 学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。 10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。 16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。 19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。 21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
数量关系计算公式方面(南京家教网整理) 1、单价*数量=总价 2、单产量*数量=总产量 3、速度*时间=路程 4、工效*时间=工作总量 5、加数+加数=和 一个加数=和+另一个加数 被减数-减数=差 减数=被减数-差 被减数=减数+差 因数*因数=积 一个因数=积÷另一个因数 被除数÷除数=商 除数=被除数÷商 被除数=商*除数。
给你几个公式:三角形面积计算公式:底*高÷2
平形四边形:底*高
正方形:边长*边长
梯形:(上底+下底)*高÷2
圆形:3.14*半径的平方
奥数公式:末项=首相+公差*(项数-1)
项数=(末项-首相)÷公差+1
总和=(首相+末项)*项数÷2
总路程÷速度和=相遇时间
和差问题:(和+差)÷2=较大数
差倍问题:差÷(倍数-1)=较小数
和倍问题:和÷(倍数+1)=较小数
质数表:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97
累死我了,望采纳~~
小学数学学习概述数学学习主要是对学生数学思维能力的培养。
这要以数学基础知识和基本技能为基础,以数学问题为诱因,以数学思想方法为核心,以数学活动为主线,遵循数学的内在规律和学生的思维规律开展教学。学习类型分析 1.方式性分类(1)接受学习与发现学习定义:将学习的内容以定论的形式呈现给学习者的学习方式。
模式:呈现材料—讲解分析—理解领会—反馈巩固(2)发现学习 定义:向学习者提供一定的背景材料,由学习者独立操作而习得知识的学习方式。 模式:呈现材料—假设尝试—认知整合—反馈巩固。
2.知识性分类一(1)知识学习 定义:以理解、掌握数学基础知识为主的学习活动。过程:选择—领会—习得——巩固(2)技能学习定义:将一连串(内部或外部的)动作经练习而形成熟练的、自动化的反应过程。
过程:演示—模仿—练习—熟练—自动化(3)问题解决学习 以关心问题解决过程为主、反思问题解决思考过程的一种数学学习活动。提出问题—分析问题—解决问题—反思过程3.知识性分类二(1)概念性(陈述性)知识的学习 把数学中的概念、定义、公式、法则、原理、定律、规则等都称为概念性知识。
概念学习:同化与形成。 利用已有概念来学习相关新概念的方式,称概念同化;依靠直接经验,从大量的具体例子出发,概括出新概念的本质属性的方式,称为概念形成。
概念形成是小学生获得数学概念的主要形式。(2)技能性(程序性)知识的学习 小学数学技能主要是运算技能。
运算技能的形成分为三个阶段: ①认知阶段:“引导式”的尝试错误。从老师演算例题或自学法则中初步了解运算法则,在头脑中形成运算方法的表征。
②联结阶段:法则阶段,即按法则一步步地运算,保证算对(使用法则解决问题,陈述性知识提供了基本的操作线索)—程序化阶段(将相关的小法则整合为整体的法则系统,此时概念性知识已退出),能算得比较快速正确。③自动化阶段:更清楚更熟练地应用第二阶段中的程序,通过较多的练习,不再思考程序,达到一定程序的自动化,获得了运算的速度和较高的正确率。
(3)问题解决(策略性知识)的学习通过重组所掌握的数学知识,找出解决当前问题的适用策略和方法,从而获得解决问题的策略的学习。小学生解决问题的主要方式,一是尝试错误式(又称试误法),即通过进行无定向的尝试,纠正暂时性尝试错误,直至解决问题;二是顿悟式(也称启发式),好像答案或方法是突然出现的,而实际上是有一定的“心向”作基础的,这就是问题解决所依据的规则、原理的评价和识别。
4.任务性分类(1)记忆操作类学习如口算、尺规作(画)图和掌握基本的运算法则并能进行准确计算等。(2)理解性的学习 如认识并掌握概念的内涵、懂得数学原理并能用于解释或说明、理解一个数学命题并能用于推得新命题。
(3)探索性的学习如需要让学生经过自己探索,发现并提出问题或学习任务,让学生通过自己的探究能总结出一个数学规律或规则,让学生通过自己的探究过程而逐步形成新的策略性知识等。 小学生数学认知学习一、小学生数学认知学习的基本特征 1.生活常识是小学生数学认知的起点 要在儿童的生活常识和数学知识之间构建一座桥梁,让儿童从生活常识和经验出发,不断通过尝试、探索和反思,从而达到“普通常识”的“数学化”。
2.小学生数学认知是一个主体的数学活动过程 数学认知过程要成为一个“做数学”的过程,让儿童从生活常识出发,在“做数学”的过程中,去发现、了解、体验和掌握数学,去认识数学的价值、了解数学的特性、总结数学的规律,去学会用数学、提高数学修养、发展数学能力。3.小学生数学认知思维具有直观化的特征 由于一方面儿童生活常识是其数学认知的基础,另一方面儿童思维是以直观具体形象思维为主,所以要以直观为主要手段,让儿童理解并构建起数学认知结构。
4.小学生数学认知是一个“再发现”和“再创造”的过程 小学生的数学学习,主要的不是被动的接受学习,而是主动的“再发现”和“再创造”学习的过程。要让他们在数学活动或是实践中去重新发现或重新创造数学的概念、命题、法则、方法和原理。
二、小学生数学认知发展的基本规律 1.小学生数学概念的发展 (1)从获得并建立初级概念为主发展到逐步理解并建立二级概念 (2)从认识概念的自身属性逐步发展到理解概念间的关系 (3)数学概念的建立受经验的干扰逐渐减弱2.小学生数学技能的发展 (1)从依赖结构完满的示范导向发展到依赖对内部意义的理解 (2)从外部的展开的思维发展到内部的压缩的思维 (3)数感和符号意识的逐步提高,支持着运算向灵活性、简洁性和多样性发展3.小学生空间知觉能力的发展 (1)方位感是逐步建立的 (2)空间概念的建立逐渐从外显特征的把握发展到对本质特征的把握 (3)空间透视能力是逐步增强的 4.小学生数学问题解决能力的发展 (1)语言表述阶段 (2)理解结构阶段 (3)多级推理能力的形成 (4)符号运算阶段 小学生数学能力的培养一、数学能力概述 1.能力概述 能力是指个体能胜任某种活动所具有的心理特征2.数学能力 。
小学数学毕业总复习无论是对学生掌握数学知识的水平层次,还是对教师全面提高教学效益都有着举足轻重的意义和作用。
为切实抓好总复习工作,全面提高六年级教学质量,特拟订以下复习计划,供大家参考。一、复习目标:1、使学生比较系统的牢固的掌握有关整数、小数、分数、比和比例、简易方程等基础知识,具有进行整数、小数、分数四则运算的能力,会使用学过的简便算法,合理、灵活的进行计算,会解简易方程,养成检查和验算的习惯。
2、使学生巩固已获得的一些计量单位的大小的表象,牢固的掌握所学的单位间的进率,能够比较熟练的进行名数的简单改写。3、使学生牢固的掌握所学的几何形体的特征,能够比较熟练的计算一些几何形体的周长、面积和体积,巩固所学的画图、测量等技能。
4、使学生掌握所学的统计初步知识,能够看和绘制简单的统计图表,并且能够计算求平均数问题。5、使学生牢固的掌握所学的一些常见的数量关系和应用题的解答方法,能够比较灵活的运用所学知识独立的解答不复杂的应用题和生活中的一些简单的实际问题。
二、复习重点:⒈整、小、分数四则运算,混合运算和简算,解方程和解比例。⒉复合应用题、分数、百分数应用题。
⒊几何形体知识。⒋综合运用知识,解决实际问题。
三、复习难点:⒈使学生对所学基础知识┄概念、性质、法则、公式以及常见数量关系系统化,并能融会贯通。⒉灵活解答应用题的能力和方法。
⒊准确的进行计算。四、复习关键:掌握“双基”,并能灵活运用。
五、复习方法:⒈分阶段复习⑴系统复习,24课时左右。⑵专题复习,12课时左右。
⑶综合检测,查漏补缺,根据具体情况而定。⒉复习主要采用讲练结合,以练为主的方法进行。
六、复习时间安排:第一阶段——24课时左右⒈数和数的运算(6课时)这节重点确定在整除的一系列概念和分数、小数的基本性质、四则运算和简便运算上。⑴、数的意义、数的读法和写法⑵、数的改写、数的大小比较⑶、数的整除、分数小数的基本性质⑷、四则运算的意义和法则⑸、运算定律和简便算法⑹、四则混合运算⒉代数的初步知识(3课时左右)本节重点内容应放在掌握简易方程及比和比例的 辨析。
⑴、用字母表示数⑵、简易方程⑶、比和比例⒊应用题(7课时左右)这节重点放在应用题的分析和解题技能的发展上,难点内容是分数应用题。⑴、简单应用题(1课时)⑵、复合应用题(2课时)⑶、列方程解应用题(2课时)⑷、用比例知识解应用题(2课时)⒋、量的计量(2课时左右)本节重点放在名数的改写和实际观念上。
⑴、长度、面积、体积、重量、时间单位⑵、名数的改写⒌、几何初步知识(5课时左右)本节重点放在对特征的辨析和对公式的应用上。⑴、平面图形的认识⑵、平面图形的周长和面积⑶、立体图形的认识⑷、立体图形的面积和体积⒍、简单的统计(2课时左右)本节重点结合考纲要求应放在对图表的认识和理解上,能回答一些简单的问题。
⑴、平均数⑵、统计表⑶、统计图 注:在复习第一阶段中,需要穿插4份综合练习。第二阶段:专题 复习训练(12课时左右)⒈ 四则混合运算、简算、解方程、解比例的强化训练。
⒉几何形体公式的实际综合应用。⒊各类应用题的训练。
⒋填空题和判断题的强化。第三阶段——根据具体情况而定。
综合练习和评讲,及时查漏补缺。七、复习中的注意点:1、注意启发,引导学生进行进行合理的整理和复习。
2、注重“双基”训练,夯实知识功底。3、以教材为本,扣紧大纲。
4、加强反馈,注意因材施教。5、力求作到上不封顶,下要保底。
八、总复习复习措施:1、在复习分块章节时,重视基础知识的复习,加强知识之间的联系,使学生在理解上进行记忆。比如:基础概念、法则、性质、公式这类。
在课堂上在系统复习中纠正学生的错误,同时防止学生机械的背诵;对于计量单位要求学生在记忆时,理顺关系。2、在复习基础知识的同时,紧抓学生的能力。
⑴、在四则混合运算方面,既要提高学生计算的正确率,又要培养学生善于利用简便方法计算。利用自习与课后辅导时间对学生进行多次的过关练习。
⑵、在量的计量和几何初步知识上,多利用实物的直观性培养学生的空间想象能力,利用习题内型的衍射性指导学生学习。⑶、应用题中着重训练学生的审题,分析数量关系,寻求合理的简便的方法,讲练结合,归纳总结,抓订正、抓落实。
3、在复习过程中注意启发,加强导优辅差。对学习能力较差,基础薄弱的学生,要求尽量跟上复习进度,同时开“小灶”,利用课间与课后时间,按最低的要求进行辅导。
而对于能力较强,程度较好的学生,鼓励他们多看多想多做,老师随时给他们提供指导和帮助。要做到突出尖子生,重视学困生,努力提高中等生。
4、在复习期间,引导学生主动自觉的复习,学习系统化的归纳整理,对于学生多采用鼓励的方法,调动学习的积极性。5、加强审题训练,提高解题能力。
在复习时,教师应切实加强学生认真读题,审题习惯的培养。让学生在读题时读清、读透。
6、在复习当中,对于学生的掌握情况要及时做到心中有数,认真与学生进行反馈交流。
对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?
一、重视课内听讲,课后及时进行复习.
新知识的接受和数学能力的培养主要是在课堂上进行的,所以我们必须特别注意课堂学习的效率,寻找正确的学习方法.在课堂上,我们必须遵循教师的思想,积极制定以下步骤,思考和预测解决问题的思想与教师之间的差异.特别是,我们必须了解基本知识和基本学习技能,并及时审查它们以避免疑虑.首先,在进行各种练习之前,我们必须记住教师的知识点,正确理解各种公式的推理过程,并试着记住而不是采用"不确定的书籍阅读".勤于思考,对于一些问题试着用大脑去思考,认真分析问题,尝试自己解决问题.
二、多做习题,养成解决问题的好习惯.
如果你想学好数学,你需要提出更多问题,熟悉各种问题的解决问题的想法.首先,我们先从课本的题目为标准,反复练习基本知识,然后找一些课外活动,帮助开拓思路练习,提高自己的分析和掌握解决的规律.对于一些易于查找的问题,您可以准备一个用于收集的错题本,编写自己的想法来解决问题,在日常养成解决问题的好习惯.学会让自己高度集中精力,使大脑兴奋,快速思考,进入最佳状态并在考试中自由使用.
三、调整心态并正确对待考试.
首先,主要的重点应放在基础、基本技能、基本方法,因为大多数测试出于基本问题,较难的题目也是出自于基本.所以只有调整学习的心态,尽量让自己用一个清楚的头脑去解决问题,就没有太难的题目.考试前要多对习题进行演练,开阔思路,在保证真确的前提下提高做题的速度.对于简单的基础题目要拿出二十分的把握去做;难得题目要尽量去做对,使自己的水平能正常或者超常发挥.
由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.
自然数
用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……叫做自然数。
整数
自然数都是整数,整数不都是自然数。
小数
小数是特殊形式的分数。但是不能说小数就是分数。
混小数(带小数)
小数的整数部分不为零的小数叫混小数,也叫带小数。
纯小数
小数的整数部分为零的小数,叫做纯小数。
循环小数
小数部分一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。例如:0.333……,1.2470470470……都是循环小数。
纯循环小数
循环节从十分位就开始的循环小数,叫做纯循环小数。例如: , 。混循环小数
与纯循环小数有唯一的区别:不是从十分位开始循环的循环小数,叫混循环小数。例如, , 。
有限小数
小数的小数部分只有有限个数字的小数(不全为零)叫做有限小数。
无限小数
小数的小数部分有无数个数字(不包含全为零)的小数,叫做无限小数。循环小数都是无限小数,无限小数不一定都是循环小数。例如,圆周率π也是无限小数。
分数
表示把一个“单位1”平均分成若干份,取其中的一份或几份的数,叫做分数。(分成0份在此不讨论)
真分数
分子比分母小的分数叫真分数。
假分数
分子比分母大,或者分子等于分母的分数叫做假分数。(分母、分子为零在此不讨论)
带分数
一个整数(零除外)和一个真分数组合在一起的数,叫做带分数。带分数也是假分数的另一种表示形式,相互之间可以互化。
关于 (n表示自然数)是否是分数
是分数,但不能用分数的意义去解释它,它既不属于真分数,也不属于假分数,而是一个特殊分数,叫零分数。
数与数字的区别
数字(也就是数码):是用来记数的符号,通常用国际通用的阿拉伯数字 0~9这十个数字。其他还有中国小写数字,大写数字,罗马数字等等。
数是由数字和数位组成。
0的意义
0既可以表示“没有”,也可以作为某些数量的界限。如温度等。0是一个完全有确定意义的数。
0是一个数。
0是一个偶数。
0是任何自然数(0除外)的倍数。
0有占位的作用。
0不能作除数。
0是中性数。
十进制
十进制计数法是世界各国常用的一种记数方法。特点是相邻两个单位之间的进率都是十。10个较低的单位等于1个相邻的较高单位。常说“满十进一”,这种以“十”为基数的进位制,叫做十进制。
加法
把两个数合并成一个数的运算,叫做加法,其中两个数都叫“加数”,结果叫“和”。
减法
已知两个加数的和与其中一个加数,求另一个加数的运算,叫做减法。减法是加法的逆运算。其中“和”叫“被减数”,已知的加数叫“减数”,求出的另一个加数叫“差”。
乘法
求n个相同加数的和的简便运算,叫做乘法。其中相同的这个数及n个这样的数都叫“因数”,结果叫“积”。
除法
已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。除法是乘法的逆运算。其中“积”叫做“被除数”,已知的一个因数叫做“除数”,求出来的另一个因数叫做“商”。
加、减法的运算定律
加法交换律:两个数相加,交换两个加数的位置,和不变,叫做加法交换律。
加法结合律:三个数相加,先把前二个数相加,再加第三个数,或者,先把后二个数相加,再加上第一个数,其和不变。这叫做加法结合律。
在减法中,被减数、减数同时加上或者减去一个数,差不变。
在减法中,被减数增加多少或者减少多少,减数不变,差随着增加或者减少多少。反之,减数增加多少或者减少多少,被减数不变,差随着减少或者增加多少。
在减法中,被减数减去若干个减数,可以把这些减数先加,差不变。
乘、除法运算定律
乘法的交换律:两个数相乘,交换两个因数的位置,积不变。这叫做乘法的交换律。
乘法的结合律:三个数相乘,先把前两个数相乘,再乘以第三个数,或者,先把后两个数相乘,再和第一个数相乘,积不变。这叫做乘法结合律。
第一单元 数与代数 (一)数的认识 整数【正数、0、负数】1、一个物体也没有,用0表示。
0和1、2、3……都是自然数。自然数是整数。
2、最小的一位数是1,最小的自然数是0。3、零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。
“+4”读作正四。“-4”读作负四。
+4也可以写成4。4、像+4、19、+8844这样的数都是正数。
像-4、-11、-7、-155这样的数都是负数。5、0既不是正数,也不是负数。
正数都大于0,负数都小于0。6、通常情况下,比海平面高用正数表示,比海平面低用负数表示。
通常情况下,盈利用正数表示,亏损用负数表示。通常情况下,上车人数用正数表示,下车人数用负数表示。
通常情况下,收入用正数表示,支出用负数表示。通常情况下,上升用正数表示,下降用负数表示。
小数【有限小数、无限小数】1、分母是10、100、1000……的分数都可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……2、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。
每相邻两个计数单位间的进率都是10。3、每个计数单位所占的位置,叫做数位。
数位是按照一定的顺序排列的。4、小数点位置移动引起小数大小变化的规律 一个小数乘10、100、1000……只要把这个小数的小数点向右移动一位、两位、三位…… 一个小数除以10、100、1000……只要把这个小数的小数点向左移动一位、两位、三位……5、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。6、比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。
7、把一个数改写成用“万”或“亿”作单位的数,只要在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。8、求小数近似数的一般方法:(1)先要弄清保留几位小数;(2)根据需要确定看哪一位上的数;(3)用“四舍五入”的方法求得结果。
9、整数和小数的数位顺序表: 整 数 部 分 小数点 小 数 部 分 … 亿 级 万 级 个 级 数位 … 千亿位 百亿位 十亿位 亿 位 千万位 百万位 十万位 万 位 千 位 百 位 十 位 个 位 • 十分位 百分位 千分位 万分位 … 计数单位 … 千亿 百亿 十亿 亿 千万 百万 十万 万 千 百 十 个(一) 十分之一 百分之一 千分之一 万分之一 … 分数【真分数、假分数】1、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,是这个分数的分数单位。
2、两个数相除,它们的商可以用分数表示。即:a÷b= (b≠0)3、从小数和分数的意义可以看出,小数实际上就是分母是10、100、1000……的分数。
4、分数可以分为真分数和假分数。5、分子小于分母的分数叫做真分数。
真分数小于1。6、分子大于或等于分母的分数叫做假分数。
假分数大于或等于1。7、分子和分母只有公因数1的分数叫做最简分数。
8、分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。9、小数的性质和分数的基本性质是一致的,应用分数的基本性质,可以通分和约分。
百分数【税率、利息、折扣、成数】1、表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫百分率或 百分比,百分数通常用“%”表示。
2、分数与百分数比较: 不同点 相同点 分 数 可以表示具体数量,可以有单位名称 表示两个数之间的关系 百分数 不可以表示具体数量,不可以有单位名称 3、分数、小数、百分数的互化。(1)把分数化成小数,用分数的分子除以分母。
(2)把小数化成分数,先改写成分母是10、100、1000……的分数,再约分。(3)把小数化成百分数,先把小数点向右移动两位,然后添上百分号。
(4)把百分数化成小数,先去掉百分号,然后把小数点向左移动两位。(5)把分数化成百分数,先把分数化成小数(除不尽时通常保留三位小数),再把小数化成百分数。
(6)把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。4、熟记常用三数的互化。
=0.5=50% ≈0.333=33.3% ≈0.667=66.7% =0.25=25% =0.75=75% =0.2=20% =0.4=40% =0.6=60% =0.8=80% ≈0.167=16.7% ≈0.833=83.3% =0.125=12.5% =0.375=37.5% =0.625=62.5% =0.875=87.5% =0.1=10% =0.3=30% =0.7=70% =0.9=90% =0.05=5% =0.15=15% =0.35=35% =0.45=45% =0.55=55% =0.65=65% =0.85=85% =0.95=95% =0.04=4% =0.025=2.5% =0.02=2% =0.01=1%5、出勤率表示出勤人数占总人数的百分之几。 合格率表示合格件数占总件数的百分之几。
成活率表示成活棵数占总棵数的百分之几。6、求一个数比另一个数多百分之几,就是求一个数比另一个数多的占另一个数的百分之几。
7、多的÷“1”=多百分之几 少的÷“1”=少百分之几 8、应得利息是税前利息,实得利息是税后利息。9、利息=本金*利率*时间10、应得利息-利息税=实得利息11、几折表示十分之几,表示百分之几十;几几折表示十分之几点几,表示百分之几十几。
12。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.215秒