有理数的加法运算 同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。 互为相反数求和,结果是零须记好。
【注】“大”减“小”是指绝对值的大小。 有理数的减法运算 减正等于加负,减负等于加正。
有理数的乘法运算符号法则 同号得正异号负,一项为零积是零。 合并同类项 说起合并同类项,法则千万不能忘。
只求系数代数和,字母指数留原样。 去、添括号法则 去括号或添括号,关键要看连接号。
扩号前面是正号,去添括号不变号。 括号前面是负号,去添括号都变号。
解方程 已知未知闹分离,分离要靠移完成。 移加变减减变加,移乘变除除变乘。
平方差公式 两数和乘两数差,等于两数平方差。 积化和差变两项,完全平方不是它。
完全平方公式 二数和或差平方,展开式它共三项。 首平方与末平方,首末二倍中间放。
和的平方加联结,先减后加差平方。 完全平方公式 首平方又末平方,二倍首末在中央。
和的平方加再加,先减后加差平方。 解一元一次方程 先去分母再括号,移项变号要记牢。
同类各项去合并,系数化“1”还没好。 求得未知须检验,回代值等才算了。
解一元一次方程 先去分母再括号,移项合并同类项。 系数化1还没好,准确无误不白忙。
因式分解与乘法 和差化积是乘法,乘法本身是运算。 积化和差是分解,因式分解非运算。
因式分解 两式平方符号异,因式分解你别怕。 两底和乘两底差,分解结果就是它。
两式平方符号同,底积2倍坐中央。 因式分解能与否,符号上面有文章。
同和异差先平方,还要加上正负号。 同正则正负就负,异则需添幂符号。
因式分解 一提二套三分组,十字相乘也上数。 四种方法都不行,拆项添项去重组。
重组无望试求根,换元或者算余数。 多种方法灵活选,连乘结果是基础。
同式相乘若出现,乘方表示要记住。 【注】 一提(提公因式)二套(套公式) 因式分解 一提二套三分组,叉乘求根也上数。
五种方法都不行,拆项添项去重组。 对症下药稳又准,连乘结果是基础。
二次三项式的因式分解 先想完全平方式,十字相乘是其次。 两种方法行不通,求根分解去尝试。
比和比例 两数相除也叫比,两比相等叫比例。 外项积等内项积,等积可化八比例。
分别交换内外项,统统都要叫更比。 同时交换内外项,便要称其为反比。
前后项和比后项,比值不变叫合比。 前后项差比后项,组成比例是分比。
两项和比两项差,比值相等合分比。 前项和比后项和,比值不变叫等比。
解比例 外项积等内项积,列出方程并解之。 求比值 由已知去求比值,多种途径可利用。
活用比例七性质,变量替换也走红。 消元也是好办法,殊途同归会变通。
正比例与反比例 商定变量成正比,积定变量成反比。 正比例与反比例 变化过程商一定,两个变量成正比。
变化过程积一定,两个变量成反比。 判断四数成比例 四数是否成比例,递增递减先排序。
两端积等中间积,四数一定成比例。 判断四式成比例 四式是否成比例,生或降幂先排序。
两端积等中间积,四式便可成比例。 比例中项 成比例的四项中,外项相同会遇到。
有时内项会相同,比例中项少不了。 比例中项很重要,多种场合会碰到。
成比例的四项中,外项相同有不少。 有时内项会相同,比例中项出现了。
同数平方等异积,比例中项无处逃。 根式与无理式 表示方根代数式,都可称其为根式。
根式异于无理式,被开方式无限制。 被开方式有字母,才能称为无理式。
无理式都是根式,区分它们有标志。 被开方式有字母,又可称为无理式。
求定义域 求定义域有讲究,四项原则须留意。 负数不能开平方,分母为零无意义。
指是分数底正数,数零没有零次幂。 限制条件不唯一,满足多个不等式。
求定义域要过关,四项原则须注意。 负数不能开平方,分母为零无意义。
分数指数底正数,数零没有零次幂。 限制条件不唯一,不等式组求解集。
解一元一次不等式 先去分母再括号,移项合并同类项。 系数化“1”有讲究,同乘除负要变向。
先去分母再括号,移项别忘要变号。 同类各项去合并,系数化“1”注意了。
同乘除正无防碍,同乘除负也变号。 解一元一次不等式组 大于头来小于尾,大小不一中间找。
大大小小没有解,四种情况全来了。 同向取两边,异向取中间。
中间无元素,无解便出现。 幼儿园小鬼当家,(同小相对取较小) 敬老院以老为荣,(同大就要取较大) 军营里没老没少。
(大小小大就是它) 大大小小解集空。(小小大大哪有哇) 解一元二次不等式 首先化成一般式,构造函数第二站。
判别式值若非负,曲线横轴有交点。 a正开口它向上,大于零则取两边。
代数式若小于零,解集交点数之间。 方程若无实数根,口上大零解为全。
小于零将没有解,开口向下正相反。 用平方差公式因式分解 异号两个平方项,因式分解有办法。
两底和乘两底差,分解结果就是它。 用完全平方公式因式分解 两平方项在两端,底积2倍在中部。
同正两底和平方,全负和方相反数。 分成两底差平方,方正倍积要为负。
两边为负中间正,底差平方相反数。 一平方又一平方,底积2倍在中路。
一、函数
10、点 关于x轴的对称点是 ,关于y轴的对称点是 ;关于原点的对称点是
11,两点 距离:
在x轴上两点: 在y轴上两点:
12、一次函数 ,b叫截距,b可以为任何数。
例: = 的截距是3
13、二次函数:
(1) 一般式: 对称轴是
(2) 顶点式: 的对称轴是 -m,k)
(3) 交点式: ,其中( ),( )是抛物线与x轴的交点
二、统计初步:
14、中位数:将一组数据按照从小到大依次排列,处在最中间的一个数据(或中间两个数据的平均数)
15、方差:
16、频率= ,总数= ,频数=总数*频率
所有的频率之和等于1,即所有的小长方形的面积之和等于1。
代数: 实数,代数式,绝对值,根式,整分式,方程,不等式;
几何:三角形(全等,相似),对称,平行线,多边形,圆:
综合:锐角三角函数,函数(正反比例2种,一次,二次),统计概率。
其中知识点相通的。
中考重点:
选择题一般考实数,绝对值与根式与基础的几何,
填空:一般基础的三角函数或小量代数计算或概率类的小额分析;
解答题:紧跟填空的为2~3个方程不等式或是次方运算,
后面的为综合性,其中全等考的较少,综合分析圆与三角形多,后期函数综合考的多,一般会有1个
应用题~
初中数学基础知识大全:直角坐标系与点的位置
1. 直角坐标系中,点A(3,0)在y轴上。
2. 直角坐标系中,x轴上的任意点的横坐标为0。
3. 直角坐标系中,点A(1,1)在第一象限。
4. 直角坐标系中,点A(-1,1)在第二象限。
5. 直角坐标系中,点A(-1,-1)在第三象限。
6. 直角坐标系中,点A(1,-1)在第四象限。
初中数学基础知识大全:特殊三角函数值
1.cos30°=√3/2
2.sin2 60°+ cos2 60°= 1
3.2sin30°+ tan45°= 2
4.tan45°= 1
5.cos60°+ sin30°= 1
初中数学基础知识大全:圆的基本性质
1.半圆或直径所对的圆周角是直角。
2.任意一个三角形一定有一个外接圆.
3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
4.在同圆或等圆中,相等的圆心角所对的弧相等。
5.同弧所对的圆周角等于圆心角的一半。
6.同圆或等圆的半径相等。
7.过三个点一定可以作一个圆。
8.长度相等的两条弧是等弧。
9.在同圆或等圆中,相等的圆心角所对的弧相等。
10.经过圆心平分弦的直径垂直于弦。
初中数学知识大全知识点1:一元二次方程的基本概念
1.一元二次方程3x2+5x-2=0的常数项是-2.
2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2. 3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7. 4.把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0.
知识点2:直角坐标系与点的位置
1.直角坐标系中,点A(3,0)在y轴上。 2.直角坐标系中,x轴上的任意点的横坐标为0. 3.直角坐标系中,点A(1,1)在第一象限. 4.直角坐标系中,点A(-2,3)在第四象限. 5.直角坐标系中,点A(-2,1)在第二象限.
知识点3:已知自变量的值求函数值
1.当x=2时,函数y=32x的值为1. 2.当x=3时,函数y=2
1x的值为1.
3.当x=-1时,函数y=3
21x的值为1.
知识点4:基本函数的概念及性质
1.函数y=-8x是一次函数. 2.函数y=4x+1是正比例函数. 3.函数xy2
1是反比例函数. 4.抛物线y=-3(x-2)2-5的开口向下. 5.抛物线y=4(x-3)2-10的对称轴是x=3. 6.抛物线2)1(2
12xy的顶点坐标是(1,2).
7.反比例函数x
y2
的图象在第一、三象限. 知识点5:数据的平均数中位数与众数
1.数据13,10,12,8,7的平均数是10. 2.数据3,4,2,4,4的众数是4.
3.数据1,2,3,4,5的中位数是3.
知识点6:特殊三角函数值
1.cos30°=
2
3. 2.sin260°+ cos260°= 1. 3.2sin30°+ tan45°= 2. 4.tan45°= 1.
5.cos60°+ sin30°= 1.
2
知识点7:圆的基本性质
1.半圆或直径所对的圆周角是直角. 2.任意一个三角形一定有一个外接圆.
3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆. 4.在同圆或等圆中,相等的圆心角所对的弧相等. 5.同弧所对的圆周角等于圆心角的一半. 6.同圆或等圆的半径相等. 7.过三个点一定可以作一个圆. 8.长度相等的两条弧是等弧.
9.在同圆或等圆中,相等的圆心角所对的弧相等. 10.经过圆心平分弦的直径垂直于弦。
知识点8:直线与圆的位置关系
1.直线与圆有唯一公共点时,叫做直线与圆相切. 2.三角形的外接圆的圆心叫做三角形的外心. 3.弦切角等于所夹的弧所对的圆心角.
4.三角形的内切圆的圆心叫做三角形的内心. 5.垂直于半径的直线必为圆的切线.
6.过半径的外端点并且垂直于半径的直线是圆的切线. 7.垂直于半径的直线是圆的切线. 8.圆的切线垂直于过切点的半径.
知识点9:圆与圆的位置关系
1.两个圆有且只有一个公共点时,叫做这两个圆外切. 2.相交两圆的连心线垂直平分公共弦.
3.两个圆有两个公共点时,叫做这两个圆相交. 4.两个圆内切时,这两个圆的公切线只有一条. 5.相切两圆的连心线必过切点.
知识点10:正多边形基本性质
1.正六边形的中心角为60°. 2.矩形是正多边形.
3.正多边形都是轴对称图形. 4.正多边形都是中心对称图形
/link?url=--_xir8R8sm 这里面有你要的
第一章 数与式
1 正数与负数
2 有理数和数轴
3 相反数与绝对值
4 a+b=+-(|a|+|b|)
5 a+b=b+a,(a+b)+c=a+(b+c)
6 a-b=a+(-b)
7 ab=+-|a|·|b|,a·0=0,ab=ba,(ab)c=a(bc),(a+b)c=ac+bc
8 a*b=a*1/b(b=0)
9 a·a……a=an(n为正整数)
10 a*10n
11 单项式:axmyn
12 多项式:A+B+C
13 合并同类项:axn+-bxn=(a+-b)xn
14 am·an=am+n(m,n都是正整数)
15 (am)n=amn(m,n都是正整数)
16 (a·b)n=anbn(n为正整数)
17 单项式乘法则
18 单项式与多项式相乘法则
19 多项式相乘法则
20 (a+b)(a-b)=a2-b2
21 (a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2
22 am/an=am-n(a=0,m,n都是正整数,且M>n)
23 单项式除以单项式法则
24 多项式除以单项式的法则
25 ma+mb+mc=m(a+b+c)
……
第二章 方程和不等式
第三章 函数及其图象
第四章 三角形
第五章 四边形
第六章 圆形
第七章 统计与概率初步
每份数*份数=总数 总数÷每份数=份数 总数÷份数=每份数 1倍数*倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 速度*时间=路程 路程÷速度=时间 路程÷时间=速度 单价*数量=总价 总价÷单价=数量 总价÷数量=单价 工作效率*工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 加数+加数=和 和-一个加数=另一个加数 被减数-减数=差 被减数-差=减数 差+减数=被减数 因数*因数=积 积÷一个因数=另一个因数 被除数÷除数=商 被除数÷商=除数 商*除数=被除数 小学数学图形计算公式 正方形 c周长 s面积 a边长 周长=边长*4 c=4a 面积=边长*边长 s=a*a 正方体 v体积 a棱长 表面积=棱长*棱长*6 s表=a*a*6 体积=棱长*棱长*棱长 v=a*a*a 3?? 长方形 c周长??s面积 a边长 周长=(长+宽)*2 c=2(a+b) 面积=长*宽 s=ab 4 长方体 v体积 s面积??a长??b 宽 h高 (1)表面积(长*宽+长*高+宽*高)*2 s=2(ab+ah+bh) (2)体积=长*宽*高 v=abh 5?? 三角形 s面积 a底 h高 面积=底*高÷2 s=ah÷2 三角形高=面积 *2÷底 三角形底=面积 *2÷高 平行四边形 s面积 a底 h高 面积=底*高 s=ah 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)*高÷2 s=(a+b)* h÷2 8?? 圆形 s面积 c周长 ∏ d=直径 r=半径 (1)周长=直径*∏=2*∏?半径 c=∏d=2∏r (2)面积=半径*半径*∏ 9?? 圆柱体 v体积??h高?? s;底面积?? r底面半径 c底面周长 (1)侧面积=底面周长*高 (2)表面积=侧面积+底面积*2 (3)体积=底面积*高 (4)体积=侧面积÷2*半径 圆锥体 v体积 h高 s;底面积 r底面半径 体积=底面积*高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数*倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数*倍数=大数 (或 小数+差=大数) 植树问题 非封闭线路上的植树问题主要可分为以下三种情形 ⑴如果在非封闭线路的两端都要植树,那么 株数=段数+1=全长÷株距-1 全长=株距*(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么 株数=段数-1=全长÷株距-1 全长=株距*(株数+1) 株距=全长÷(株数+1) 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和*相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差*追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量*100%=浓度 溶液的重量*浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本*100%=(售出价÷成本-1)*100% 涨跌金额=本金*涨跌百分比 折扣=实际售价÷原售价*100%(折扣请采我哦 常见的初中数学公式 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,。
初中代数的教学要求①是: 1.使学生了解有理数、实数的有关概念,熟练掌握有理数的运算法则,灵活运用运算律简 化运算;会查平方表、立方表、平方根表、立方根表或用计算器代替算表。
2.使学生了解有关代数式、整式、分式和二次根式的概念,掌握它们的性质和运算法则, 能够熟练地进行整式、分式和二次根式的运算以及多项式的因式分解。 3.使学生了解有关方程、方程组的概念;灵活运用一元一次方程、二元一次方程组和一元 二次方程的解法解方程和方程组,掌握分式方程和简单的二元二次方程组的解法,理解一元 二次方程的根的判别式。
能够分析等量关系列出方程或方程组解应用题。 使学生了解一元一次不等式、一元一次不等式组的概念,会解一元一次不等式和一元一次不 等式组,并把它们的解集在数轴上表示出来。
4.使学生理解平面直角坐标系的概念,了解函数的意义,理解正比例函数、反比例函数、一次函数的概念和性质,理解二次函数的概念,会根据性质画出正比例函数、一次函数的图 象,会用描点法画出反比例函数、二次函数的图象。 5.使学生了解统计的思想,掌握一些常用的数据处理方法,能够用统计的初步知识解决一 些简单的实际问题。
6.使学生掌握消元、降次、配方、换元等常用的数学方法,解决某些数学问题,理解“特殊 ——一般——特殊”、“未知——已知”、用字母表示数、数形结合和把复杂问题转化成简单问 题等基本的思想方法。 7.使学生通过各种运算和对代数式、方程、不等式的变形以及重要公式的推导,通过用概 念、法则、性质进行简单的推理,发展逻辑思维能力。
8.使学生了解已知与未知、特殊与一般、正与负、等与不等、常量与变量等辩证关系,以 及反映在函数概念中的运动变化观点。了解反映在数与式的运算和求方程解的过程中的矛盾 转化的观点。
同时,利用有关的代数史料和社会主义建设成就,对学生进行思想教育。 教学内容①和具体要求如下。
(一)有理数 l·有理数的概念 有理数。数轴。
相反数。数的绝对值。
有理数大小的比较。 具体要求: (1)了解有理数的意义,会用正数与负数表示相反意义的量,以及按要求把给出的有理数 归类。
(2)了解数轴、相反数、绝对值等概念和数轴的画法,会用数轴上的点表示整数或分数(以 刻度尺为工具),会求有理数的相反数与绝对值(绝对值符号内不含字母)。 (3)掌握有理数大小比较的法则,会用不等号连接两个或两个以上不同的有理数。
2。有理数的运算 有理数的加法与减法。
代数和。加法运算律。
有理数的乘法与除法。倒数。
乘法运算律。有 理数的乘方。
有理数的混合运算。 科学记数法。
近似数与有效数字。平方表与立方表。
具体要求: (1)理解有理数的加、减、乘、除、乘方的意义,熟练掌握有理数的运算法则、运算律、运算顺序以及有理数的混合运算,灵活运用运算律简化运算。 (2)了解倒数概念,会求有理数的倒数。
(3)掌握大于10的有理数的科学记数法。 (4)了解近似数与有效数字的概念,会根据指定的精确度或有效数字的个数,用四舍五人 法求有理数的近似数;会查平方表与立方表。
(5)了解有理数的加法与减法、乘法与除法可以相互转化。 (二)整式的加减 代数式。
代数式的值。整式。
单项式。多项式。
合并同类项。 去括号与添括号。
数与整式相乘。整式的加减法。
具体要求: (1)掌握用字母表示有理数,了解用字母表示数是数学的一大进步。 (2)了解代数式、代数式的值的概念,会列出代数式表示简单的数量关系,会求代数式的 值。
(3)了解整式、单项式及其系数与次数、多项式次数、项与项数的概念,会把一个多项式 接某个字母降幂排列或升幂排列。 (4)掌握合并同类项的方法,去括号、添括号的法则,熟练掌握数与整式相乘的运算以及 整式的加减运算。
(5)通过用字母表示数、列代数式和求代数式的值、整式的加减,了解抽象概括的思维方 法和特殊与一般的辩证关系。 (三)一元一次方程 等式。
等式的基本性质。方程和方程的解。
解方程。 一元一次方程及其解法。
一元一次方程的应用。 具体要求: (1)了解等式和方程的有关概念,掌握等式的基本性质,会检验一个数是不是某个一元方 程的解。
(2)了解一元一次方程的概念,灵活运用等式的基本性质和移项法则解一元一次方程,会 对方程的解进行检验。 (3)能够找出简单应用题中的未知量和已知量,分析各量之间的关系,并能够寻找等量关 系列出一元一次方程解简单的应用题,会根据应用题的实际意义,检查求得的结果是否合理。
(4)通过解方程的教学,了解“未知”可以转化为“已知”的思想方法。 (四)二元一次方程组 二元一次方程及其解集。
方程组和它的解。解方程组。
用代人(消元)法、加减(消元)法解二元一次方程组。三元一次方程组及其解法举例。
一次方程组的应用。 具体要求: (1)了解二元一次方程的概念,会把二元一次方程化为用一个未知数的代数式表示另一个 未知数的形式,会检查一对数值是不是某个二元一次方程的一个解。
(2)了解方程组和它的解、解方程组等概念;会检验一对数值是不是某个二元一次方程组 的一个解。 (3)灵活运用代人。
一、基本知识一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。2、实数 无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点来表示。3、代数式代数式:单独一个数或者一个字母也是代数式。
合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。
③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。4、整式与分式整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。幂的运算:AM+AN=A(M+N) (AM)N=AMN (A/B)N=AN/BN 除法一样。
整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。公式两条:平方差公式/完全平方公式整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
方法:提公因式法、运用公式法、分组分解法、十字相乘法。分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。加减法:①同分母分式相加减,分母不变,把分子相加减。
②异分母的分式先通分,化为同分母的分式,再加减。分式方程:①分母中含有未知数的方程叫分式方程。
②使方程的分母为0的解称为原方程的增根。B、方程与不等式1、方程与方程组一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。
②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.606秒