1、两位数除以一位数:先除十位,再除个位,每次除得的余数要比除数小。
除法可用乘法进行验算。没有余数的:商*除数=被除数;有余数的:商*除数+余数=被除数2、10个一是十,10个十是一百,10个百是一千,10个一千是一万。
3、右起第一位是个位,第二位是十位,第三位是百位,第四位是千位,第五位是万位。四位数是由几个千、几个百、几个十和几个一组成的。
4、四位数的写法:从高位写起,哪个数位上有几就写几,哪个数位上没有数,就写0。四位数的读法:从高位读起,中间有1个0或连续有几个0,都只读1个0,末尾的0都不读。
5、比较数的大小:位数不同,位数多的大;位数相同比千位;千位相同比百位;百位相同比十位;十位相同比个位,直到比出大小为止。6、要准确测量物品有多重,要用“秤”称一称。
称一般物品有多重,常用千克作单位;称比较轻的物品,常用克作单位。千克用符号“kg”表示,克用符号“g”表示。
1千克=1000克。7、长方形和正方形都有四条边、四个角,都是四边形。
长方形对边相等,四个角都是直角。正方形四条边都相等,四个角都是直角。
正方形是特殊的长方形。平面图形一周的总长度是周长。
长方形的周长=2条长+2条宽或长方形的周长=(长+宽)*2长方形的长=周长÷2-宽长方形的宽=周长÷2-长正方形的周长=边长*4正方形的边长=周长÷4要在长方形里剪最大的正方形,只要边长=宽。8、24时记时法时间词语有:凌晨、早上、上午、中午、下午、晚上等。
A、普通记时法→24时记时法:去掉时间词语,下午和晚上要+12B、24时记时法→普通记时法:加上时间词语,超过12时的要-12C、求经过时间可以先统一计时法,然后用后面的时刻减前面的时刻,结果换成时间单位。9、观察物体。
从不同的角度观察长(正)方体,最多可以看到三个面。10、理解“偶尔”、“经常”、“可能”、“一定”等词语的含义,会用这些词语举例。
11、认识分数。理解“平均分”。
分母相同比分子,分子大的分数就大;分子相同比分母,分母大的反而小。四年级上册的加法各部分间的关系;一个加数=和-另一个加数减法各部分间的关系;差=被减数-减数减数=被减数-差被减数=减数+差乘法各部分间的关系;一个因数=积/另一个因数除法各部分间的关系;商=被除数/除数除数=被除数/商被除数=商*除数五年级上册数的世界1.象0,1,2,3,4,5,6……这样的数是自然数2.象-3,-2,-1,0,1,2,3,……这样的数是整数。
整数包括自然数3.倍数和因数:倍数和因数是相互依存的。如:A*B=C,就可以说A是B和C的倍数,B和C是A的因数。
如:20是4和5的倍数,4和5是20的因数。注意:我们只在自然数(0除外)范围内研究倍数和因数。
4.奇数和偶数:是2的倍数的数叫偶数,不是2的倍数的数叫奇数。5.找因数:找一个数的因数,一对一对有序的找就不会重复和遗漏。
一个数最小的因数是1,最大的因数是它本身。6.找倍数:从1倍开始有序的找,一个数没有最大的倍数。
最小的倍数是它本身。7.质数:一个数只有1和它本身两个因数,这个数叫质数。
8.合数:一个数除了1和它本身以外还有别的因数,这个数叫合数。注意:1既不是质数也不是合数。
9:按一个数的因数分,自然数可以分为(质数),(合数),(1和0)三。按一个数的奇偶性来分,自然数可以分为(奇数和偶数)两类。
0是最小的偶数。10.补充:整除:整数A除以整数B,(B不等于0),除得的商正好是整数而没有余数,我们就说A能被B整除。
11.2,3,5的倍数特征:个位上是0,2,4,6,8的数都是2的倍数。个位上是0或5的数都是5的倍数。
各个数位之和是3的倍数,这个数就是3的倍数。12.质因数:每个合数都可以写成几个质数相乘的形式。
其中每个质数都是这个合数的因数,叫做这个合数的质因数。13.把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
14.几个数公有的因数,叫做这几个数的公因数。其中最大的一个,叫做他们的最大公因数。
15.公因数只有1的两个数,叫做互质数。16.几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数。
17.分子分母是互质数的分数叫最简分数。18.约分:把一个分数化成同它相等,但分子分母都比较小的分数,叫做约分。
注意:约分时尽量用口算。一般用分子和分母的公因数(1除外)去除分数的分子和分母;通常要除到得出最简分数为止。
19.通分:把异分母分数分别化成和原来分数相等的同分母分数,叫通分。通分的一般方法是:先求出原来几个分母的最小公倍数,然后把分数分别化成用这个最小公倍数做分母的分数。
20.小数化分数,原来有几位小数,就在1后面写几个0作分母,把原来的小数去掉小数点做分子;化成分数后,能约分的要约分。21.分母不是整十,整百,整千的分数化小数,要用分母去除分子,除不尽的,可以根据需要按四舍五入保留几位小数。
22.(一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。)23.一个数的因数的个数是有限的,一个数的倍数的个数是无限的。”
“最小的。
小学数学公式大全, 第一部分: 概念。
1,加法交换律:两数相加交换加数的位置,和不变。 2,加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。
3,乘法交换律:两数相乘,交换因数的位置,积不变。 4,乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。
5,乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。 如:(2+4)*5=2*5+4*5 6,除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。
0除以任何不是0的数都得0。 简便乘法:被乘数,乘数末尾有0的乘法,可以先把0前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。
7,什么叫等式 等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。
8,什么叫方程式 答:含有未知数的等式叫方程式。 9, 什么叫一元一次方程式 答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。
学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。
10,分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。 11,分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。 12,分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。
异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。 13,分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。
14,分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。 15,分数除以整数(0除外),等于分数乘以这个整数的倒数。
16,真分数:分子比分母小的分数叫做真分数。 17,假分数:分子比分母大或分子和分母相等的分数叫做假分数。
假分数大于或等于1。 18,带分数:把假分数写成整数和真分数的形式,叫做带分数。
19,分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。 20,一个数除以分数,等于这个数乘以分数的倒数。
21,甲数除以乙数(0除外),等于甲数乘以乙数的倒数。 分数的加,减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。
22,什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
23,什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:18 24,比例的基本性质:在比例里,两外项之积等于两内项之积。
25,解比例:求比例中的未知项,叫做解比例。如3:χ=9:18 26,正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k( k一定)或kx=y 27,反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:x*y = k( k一定)或k / x = y 28,百分数:表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比。 29,把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。
其实,把小数化成百分数,只要把这个小数乘以100%就行了。 30,把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
31,把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。
32,把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。 33,要学会把小数化成分数和把分数化成小数的化发。
34,最大公约数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。(或几个数公有的约数,叫做这几个数的公约数。
其中最大的一个, 叫做最大公约数。) 35,互质数: 公约数只有1的两个数,叫做互质数。
36,最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。 37,通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。
(通分用最小公倍数) 38,约分:把一个分数化成同它相等,但分子,分母都比较小的分数,叫做约分。(约分用最大公约数) 39,最简分数:分子,分母是互质数的分数,叫做最简分数。
40,分数计算到最后,得数必须化成最简分数。 41,个位上是0,2,4,6,8的数,都能被2整除,即能用2进行约分。
个位上是0或者5的数,都能被5整除,即能用5进行约分。在约分时应注意利用。
43,偶数和奇数:能被2整除的数叫做偶数。不能被2整除的数叫做奇数。
。
小学数学知识概念公式汇总 小学一年级 九九乘法口诀表.学会基础加减乘. 小学二年级 完善乘法口诀表,学会除混合运算,基础几何图形. 小学三年级 学会乘法交换律,几何面积周长等,时间量及单位.路程计算,分配律,分数小数. 小学四年级 线角自然数整数,素因数梯形对称,分数小数计算. 小学五年级 分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积. 小学六年级 比例百分比概率,圆扇圆柱及圆锥. 必背定义、定理公式 三角形的面积=底*高÷2. 公式 S= a*h÷2 正方形的面积=边长*边长 公式 S= a*a 长方形的面积=长*宽 公式 S= a*b 平行四边形的面积=底*高 公式 S= a*h 梯形的面积=(上底+下底)*高÷2 公式 S=(a+b)h÷2 内角和:三角形的内角和=180度. 长方体的体积=长*宽*高 公式:V=abh 长方体(或正方体)的体积=底面积*高 公式:V=abh 正方体的体积=棱长*棱长*棱长 公式:V=aaa 圆的周长=直径*π 公式:L=πd=2πr 圆的面积=半径*半径*π 公式:S=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高.公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积.公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高.公式:V=Sh 圆锥的体积=1/3底面*积高.公式:V=1/3Sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减. 分数的乘法则:用分子的积做分子,用分母的积做分母. 分数的除法则:除以一个数等于乘以这个数的倒数. 读懂理解会应用以下定义定理性质公式 一、算术方面 1、加法交换律:两数相加交换加数的位置,和不变. 2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变. 3、乘法交换律:两数相乘,交换因数的位置,积不变. 4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变. 5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.如:(2+4)*5=2*5+4*5 6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变. O除以任何不是O的数都得O. 简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾. 7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式. 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立. 8、什么叫方程式?答:含有未知数的等式叫方程式. 9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式. 学会一元一次方程式的例法及计算.即例出代有χ的算式并计算. 10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数. 11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变.异分母的分数相加减,先通分,然后再加减. 12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小.异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小. 13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变. 14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母. 15、分数除以整数(0除外),等于分数乘以这个整数的倒数. 16、真分数:分子比分母小的分数叫做真分数. 17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数.假分数大于或等于1. 18、带分数:把假分数写成整数和真分数的形式,叫做带分数. 19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变. 20、一个数除以分数,等于这个数乘以分数的倒数. 21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数. 数量关系计算公式方面 1、单价*数量=总价 2、单产量*数量=总产量 3、速度*时间=路程 4、工效*时间=工作总量 5、加数+加数=和 一个加数=和+另一个加数 被减数-减数=差 减数=被减数-差 被减数=减数+差 因数*因数=积 一个因数=积÷另一个因数 被除数÷除数=商 除数=被除数÷商 被除数=商*除数 有余数的除法: 被除数=商*除数+余数 一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变.例:90÷5÷6=90÷(5*6) 6、1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米 1吨=1000千克 1千克= 1000克= 1公斤= 1市斤 1公顷=10000平方米. 1亩=666.666平方米. 1升=1立方分米=1000毫升 1毫升=1立方厘米 7、什么叫比:两个数相除就叫做两个数的比.如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变. 8、什么叫比例:表示两个比相等的式子叫做比例.如3:6=9:18 9、比例的基本性质:在比例里,两外项之积等于两内项之积. 10、解比例:求比例中的未知项,叫做解比例.如。
对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?
一、重视课内听讲,课后及时进行复习.
新知识的接受和数学能力的培养主要是在课堂上进行的,所以我们必须特别注意课堂学习的效率,寻找正确的学习方法.在课堂上,我们必须遵循教师的思想,积极制定以下步骤,思考和预测解决问题的思想与教师之间的差异.特别是,我们必须了解基本知识和基本学习技能,并及时审查它们以避免疑虑.首先,在进行各种练习之前,我们必须记住教师的知识点,正确理解各种公式的推理过程,并试着记住而不是采用"不确定的书籍阅读".勤于思考,对于一些问题试着用大脑去思考,认真分析问题,尝试自己解决问题.
二、多做习题,养成解决问题的好习惯.
如果你想学好数学,你需要提出更多问题,熟悉各种问题的解决问题的想法.首先,我们先从课本的题目为标准,反复练习基本知识,然后找一些课外活动,帮助开拓思路练习,提高自己的分析和掌握解决的规律.对于一些易于查找的问题,您可以准备一个用于收集的错题本,编写自己的想法来解决问题,在日常养成解决问题的好习惯.学会让自己高度集中精力,使大脑兴奋,快速思考,进入最佳状态并在考试中自由使用.
三、调整心态并正确对待考试.
首先,主要的重点应放在基础、基本技能、基本方法,因为大多数测试出于基本问题,较难的题目也是出自于基本.所以只有调整学习的心态,尽量让自己用一个清楚的头脑去解决问题,就没有太难的题目.考试前要多对习题进行演练,开阔思路,在保证真确的前提下提高做题的速度.对于简单的基础题目要拿出二十分的把握去做;难得题目要尽量去做对,使自己的水平能正常或者超常发挥.
由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.
楼主您好,很高心为您服务:《小学数学知识大全》有数的认识、式与方程、图形与位置、可能性、探索规律、解决问题的策略等19个专题的内容,对你在小学阶段学习的知识进行了合理的归纳和整理。
每个专题的内容详略得当,能够快速查找、方便使用。 《新课标小学数学基础知识宝典》以国家教育部最新颁布的《九年义务教育数学课程标准》为依据,结合人教、苏教、北师等版本的小学数学教材,通过“数与代数”“空间与图形”“统计与概率”“实践与综合应用”“趣味数学”“小学奥数”等六个章节的内容,对小学阶段所应掌握的数学知识进行了合理的归纳和整理,知识体系完备,材料丰富。
既可增强解析数学题的思维能力,又能激发小学生学习数学的兴趣。从难度上来说,《小学数学知识大全》略容易,《新课标小学数学基础知识宝典》略广阔。
我建议提高生选择《小学数学知识大全》 培优生选择《新课标小学数学基础知识宝典》《新课标小学数学基础知识宝典》网上购买:#none楼主如果还有问题尽管提出来,满意我的答案请给我采纳哦~。
学好小学数学有三个步骤:培养兴趣、打好基础、灵活运用。
(1)如何培养孩子学习数学的兴趣? 很多人认为,数学这门学科单调、抽象,与我们的生活脱离。正是这样的思想,扼杀了孩子学习数学的兴趣。
其实,学习数学是一件幸福、快乐的事情,只要你细心观察,它是无处不在的。 小到门牌号码的排列规律,大到科学技术的研究发展,我们仿佛生活在一个充满数字的世界里。
首先,我们要帮助孩子在自己的身边找到有趣的数学问题,通过一些有趣的数学小游戏,让孩子感受到数学的奥妙和乐趣,从而激发他们学习数学的激情、探索知识的兴趣。 当孩子们感受到数学知识能够帮你解决身边的问题,帮你变的更聪明时,那学起数学来就轻松多了,也变的快乐了。
其次,很多孩子害怕出错,认为做错了就会挨批评,从而灰心自卑。反而,我们应该要鼓励错误,它来自于孩子,贴近孩子,暴露出孩子的真实思维,帮助我们一起发现孩子知识构建的障碍。
其实有些错误的产生也包含着孩子自己的创意,他们用自己独特的思维和想法来解题,通过巧妙的点拨和指导,则能够帮助孩子突破障碍,甚至能够达到一个自己创新的境界。让孩子不怕出错,大胆探索,大胆想象,解开禁锢孩子思维的框架,让孩子在一个快乐、轻松的环境里学习。
(2)如何打好数学基础? 学习就如盖高楼,要有美丽宏伟的大厦,就要先有扎实的“地基”。这些基础并不如“大厦”的精致豪华,但正是要有这些单调的基础,才能够构建出成功和辉煌。
打好数学的基础,不像大厦地基一样辛苦费神,数学基础是可以用巧学而来的。 分蛋糕,学分数;走走路,学行程;玩扑克,学四则运算……通过一个典型的例子,或者通过孩子亲身体验和角色转换,让孩子们把知识牢牢刻在心里。
在此同时,孩子们也感受到学习的无限乐趣。在玩耍中学习,既快乐,又能够对知识有透彻的了解和深刻的记忆。
数学的基础知识很多,但它们之间也有着联系,通过他们彼此之间的联系来“连锁记忆”也是一个打好基础的好方法。例如从整数四则运算到小数、分数的四则运算,从观察物体到认识平面、立体图形……把一个个知识串成一条完整的知识链,有助于孩子们更牢固的掌握基础知识。
(3)如何灵活用所学知识? 数学习题很多,做也做不完,换个题材换个数字,又可以变出很多题。因此,靠做习题来掌握知识和提高成绩,效率不高,又容易疲劳。
打好基础,就是为了灵活运用基础来解决和探索更多问题。如何灵活运用,那就要有灵活的思路。
让孩子们自己对题目进行解读和了解,用已学过的方法来解题,试图寻找新的解题方法。再帮助孩子概括出题目内容,抓住题目要点,理清解题思路,带着孩子一起思考一起解题,让孩子在引导下自己攻克难题。
鼓励孩子用多样的方法解题,方法多、思路多不是一件坏事,它能够开发孩子的智力,调动孩子学习的主动性和积极性。 但在追求算法多样化的同时,我们还要注意力求“优化”,让学生从多种算法中去分析、去辨别,哪种方法最简便,这样不仅培养了学生的多向思维,还渗透了“择优而用”的思想。
学会一个好的、简便的思路,能够让孩子在答题时事半功倍,提高效率,节省时间。 让孩子们自己动脑体验解题过程,参与思考,而不是强加给他们一种思考方法,通过这样的方式,让孩子能够真正掌握一种类型题的解题思路,就算换个方式出题,他们依旧能够轻松应变。
当然,孩子们要想学好数学,还要有端正的学习态度,“持之以恒”的精神,这样在学习上遇到任何困难,都能立于不败之地了。
自然数
用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10……叫做自然数。
整数
自然数都是整数,整数不都是自然数。
小数
小数是特殊形式的分数。但是不能说小数就是分数。
混小数(带小数)
小数的整数部分不为零的小数叫混小数,也叫带小数。
纯小数
小数的整数部分为零的小数,叫做纯小数。
循环小数
小数部分一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。例如:0.333……,1.2470470470……都是循环小数。
纯循环小数
循环节从十分位就开始的循环小数,叫做纯循环小数。例如: , 。混循环小数
与纯循环小数有唯一的区别:不是从十分位开始循环的循环小数,叫混循环小数。例如, , 。
有限小数
小数的小数部分只有有限个数字的小数(不全为零)叫做有限小数。
无限小数
小数的小数部分有无数个数字(不包含全为零)的小数,叫做无限小数。循环小数都是无限小数,无限小数不一定都是循环小数。例如,圆周率π也是无限小数。
分数
表示把一个“单位1”平均分成若干份,取其中的一份或几份的数,叫做分数。(分成0份在此不讨论)
真分数
分子比分母小的分数叫真分数。
假分数
分子比分母大,或者分子等于分母的分数叫做假分数。(分母、分子为零在此不讨论)
带分数
一个整数(零除外)和一个真分数组合在一起的数,叫做带分数。带分数也是假分数的另一种表示形式,相互之间可以互化。
关于 (n表示自然数)是否是分数
是分数,但不能用分数的意义去解释它,它既不属于真分数,也不属于假分数,而是一个特殊分数,叫零分数。
数与数字的区别
数字(也就是数码):是用来记数的符号,通常用国际通用的阿拉伯数字 0~9这十个数字。其他还有中国小写数字,大写数字,罗马数字等等。
数是由数字和数位组成。
0的意义
0既可以表示“没有”,也可以作为某些数量的界限。如温度等。0是一个完全有确定意义的数。
0是一个数。
0是一个偶数。
0是任何自然数(0除外)的倍数。
0有占位的作用。
0不能作除数。
0是中性数。
十进制
十进制计数法是世界各国常用的一种记数方法。特点是相邻两个单位之间的进率都是十。10个较低的单位等于1个相邻的较高单位。常说“满十进一”,这种以“十”为基数的进位制,叫做十进制。
加法
把两个数合并成一个数的运算,叫做加法,其中两个数都叫“加数”,结果叫“和”。
减法
已知两个加数的和与其中一个加数,求另一个加数的运算,叫做减法。减法是加法的逆运算。其中“和”叫“被减数”,已知的加数叫“减数”,求出的另一个加数叫“差”。
乘法
求n个相同加数的和的简便运算,叫做乘法。其中相同的这个数及n个这样的数都叫“因数”,结果叫“积”。
除法
已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。除法是乘法的逆运算。其中“积”叫做“被除数”,已知的一个因数叫做“除数”,求出来的另一个因数叫做“商”。
加、减法的运算定律
加法交换律:两个数相加,交换两个加数的位置,和不变,叫做加法交换律。
加法结合律:三个数相加,先把前二个数相加,再加第三个数,或者,先把后二个数相加,再加上第一个数,其和不变。这叫做加法结合律。
在减法中,被减数、减数同时加上或者减去一个数,差不变。
在减法中,被减数增加多少或者减少多少,减数不变,差随着增加或者减少多少。反之,减数增加多少或者减少多少,被减数不变,差随着减少或者增加多少。
在减法中,被减数减去若干个减数,可以把这些减数先加,差不变。
乘、除法运算定律
乘法的交换律:两个数相乘,交换两个因数的位置,积不变。这叫做乘法的交换律。
乘法的结合律:三个数相乘,先把前两个数相乘,再乘以第三个数,或者,先把后两个数相乘,再和第一个数相乘,积不变。这叫做乘法结合律。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.034秒