其实高数并非想象的那么不可高攀,最关键的是要注意学习方法,而高数一和高数二的学习又有所不同,下面具体介绍我的对学习高数的技巧。
一)高数一(或工专),首先要有扎实的基本功因为高数一主要是微积分,它实际是有关函数的各种运算。所以首先就是熟悉各种函数的性质、运算等,这些内容都是高中课本上的内容,在高数一书本上只是简单介绍而已。
那么对那些准备学习高数一的朋友,要先看看你的基础如何,如果中学的知识全还给老师的话,我建议你先看看中学的书,特别是有关指数函数、幂函数、对数函数、三角函数等一定要很熟,否则要想学好高数可能就需要很多时间了。 在有较扎实的基础后,现在可以开始学习高数了。
因为高数一各章是相互关联层层推进的,每一章都是后一章的基础,所以学习时一定要按部就班,只有将这一章真正搞懂了才可进入下一章学习,切忌为求快而去速学,欲速则不达嘛,特别是当前面没学好硬去学后面的,会将不懂的问题越集越多,此时自学者的心态就会越来越烦躁,并且不知从何处下手去改善,所见的题目、知识全都不懂,这时很大部分朋友可能就会放弃做逃兵。所以一定要一章一章去学。
在学每一章时,建议先将课本内容看一遍,如果一遍还不明的话,再看一遍。然后看书上的例题,同时试着去做书后的习题。
有条件的话,可以买一些参考书来看和做题。做了部分题后,就拿一套以往考试题看看考题中本章有没有题,可以看看关于本章出题的方式。
一定要多做题,高数一讲究“熟能生巧”,“熟做高数三千题,考试一定就能行)。 高数一学习是一个长期的过程,所以往后学的过程中,一定要制定计划定期拿一些前面章节的题来做。
很多考生在学习过程中,往往学到后面的就把前面内容忘记了。边学边忘肯定是不行的,也会影响到后面的学习。
高数一历年来都是通过率较低的一门学科,原因在于学习着必须真正认真去学才能通过,仅仅靠蒙是很难过的。它出题千变万化,根本无法去估题。
并且由于各章相互联系,所以根本无法区分重点和非重点,很多学友问可否划划重点,我的答案是没有重点,因为全是重点。另外强烈推荐学习者去参加一些培训或有一个可以请教的高手,这样可以在遇到难题时及时得到解决同时可以学到各种解题方法(一般书上的解题方法太少)。
另外还要特别强调的是高数学习最好是一个连贯的过程,也就是说一定要制订一个阶段性的学习计划,比如用半年或一年的时间去学它。很多学高数屡战屡败的朋友可能都有这样的经历:准备考比如十月的高数,那么就去报班读,但读到一小半时可能由于种种原因就读不下去了,高数也只学到积分那章就放弃了,心里可能想,哎高数那么难,留到明年再考吧。
借口一有,马上放弃十月的考试了。那等明年,这种情况可能又会重复一次,从而周而复始,于是所有科目都过了,只剩下高数这个硬骨头,心理自然就生出高数好难的念头。
这种情况在我以前上课时经常发生,刚开课时,教室挤满人,但课程还没上到一半人就走掉一半了,最后能坚持下来的人寥寥无几,而最后能通过考试的恰好就是这些坚持下来的学生。所以有时我就学员当准备考高数时,最好只报考高数一门,全心投入去学习它,当你中途感到吃力坚持不下时,不要找任何借口逃脱,而要想想问题出在哪里,为什么学不下去?找到问题所在然后克服它,那最后一定能成功! 二)高数二的学习与高数一相比有很大的差异。
首先说一说它们之间的异同,第一点,高数二不需要太多的基础知识,只是概率里有一点积分和导数的简单计算;第二点,高数一整个内容由微分扣积分这条线贯穿始终,而高数二内容连贯性不是很强;第三点,高数一学习要从根本上加强对基本概念和理论的理解,拓宽解题思路,加强例题典型题的分析和综合练习,并能对典型题举一反三,所以需要做大量题,而高数二要加强基本概念的理解,并能掌握书本上的基本例题即可,不需举一反三,考试题目特别是概率的大题大多千篇一律,无非就是将书上例题数字改一改而已,所以不需做大量题,只需将书上题目“真正”会做即可,如果你能找到大量的题的话,你仔细看看,肯定是千篇一律的。 根据以上几点,我们再来谈谈高数二的学习,首先学习过程中,一定要将每一章内容、概念、定理等真正理解,这可以通过多看几遍书来达到。
看书时一定要静下心来,因为高数二内容较难理解,当看不下去时一定不要放弃,要硬着头皮往下读。这里要注意一点的是,高数二中可能会有很多对定理、推论的证明过程,这些证明过程又长又复杂,我建议大家对这些证明过程可以不用去看,你只需捉住精华---定理、推论,好好理解它们就可以了。
当看懂一章内容之后,可以将书后的习题拿来做一做,一定要会做,而不是做完就了事。高数二主要的题型无非就是:(1)行列式的计算;(2)矩阵的运算;(3)线性方程组的求解;(4)特征值和特征向量的计算;(5)二次型的化简;(6)概率论中求概率;(7)求分布与求数字特征;(8)数理统计中求点估计,求区间估计与求检验的拒绝域。
书上关于这几方面的题目一定要做。
高数对于自学考试的人来说,十分之难。
本人从事过多年高数自学考试教学工作,对此深有体会。很多参加自学考试的人都是业余学习,需要很强的毅力。
自学考试大部分科目都是考前背一背就可以通过,但高数就完全不同了,它需要扎实的功底,需要很强的逻辑推理能力,需要做大量枯燥无味的习题,需要翻烂一本书的耐力,需要。
..所以很多自学考试的“勇士”往往是“栽”在高数这一门上,屡战屡败,盲然中他们付出了太多,失去了太多!我有个学生,高数考了不下十次,其它科目全过了,就等高数一门就可拿到学位了,好惨! 其实高数并非想象的那么不可高攀,最关键的是要注意学习方法,而高数一和高数二的学习又有所不同,下面具体介绍我的对学习高数的技巧。 一)高数一(或工专),首先要有扎实的基本功因为高数一主要是微积分,它实际是有关函数的各种运算。
所以首先就是熟悉各种函数的性质、运算等,这些内容都是高中课本上的内容,在高数一书本上只是简单介绍而已。那么对那些准备学习高数一的朋友,要先看看你的基础如何,如果中学的知识全还给老师的话,我建议你先看看中学的书,特别是有关指数函数、幂函数、对数函数、三角函数等一定要很熟,否则要想学好高数可能就需要很多时间了。
在有较扎实的基础后,现在可以开始学习高数了。因为高数一各章是相互关联层层推进的,每一章都是后一章的基础,所以学习时一定要按部就班,只有将这一章真正搞懂了才可进入下一章学习,切忌为求快而去速学,欲速则不达嘛,特别是当前面没学好硬去学后面的,会将不懂的问题越集越多,此时自学者的心态就会越来越烦躁,并且不知从何处下手去改善,所见的题目、知识全都不懂,这时很大部分朋友可能就会放弃做逃兵。
所以一定要一章一章去学。 在学每一章时,建议先将课本内容看一遍,如果一遍还不明的话,再看一遍。
然后看书上的例题,同时试着去做书后的习题。有条件的话,可以买一些参考书来看和做题。
做了部分题后,就拿一套以往考试题看看考题中本章有没有题,可以看看关于本章出题的方式。一定要多做题,高数一讲究“熟能生巧”,“熟做高数三千题,考试一定就能行)。
高数一学习是一个长期的过程,所以往后学的过程中,一定要制定计划定期拿一些前面章节的题来做。很多考生在学习过程中,往往学到后面的就把前面内容忘记了。
边学边忘肯定是不行的,也会影响到后面的学习。 高数一历年来都是通过率较低的一门学科,原因在于学习着必须真正认真去学才能通过,仅仅靠蒙是很难过的。
它出题千变万化,根本无法去估题。并且由于各章相互联系,所以根本无法区分重点和非重点,很多学友问可否划划重点,我的答案是没有重点,因为全是重点。
另外强烈推荐学习者去参加一些培训或有一个可以请教的高手,这样可以在遇到难题时及时得到解决同时可以学到各种解题方法(一般书上的解题方法太少)。 另外还要特别强调的是高数学习最好是一个连贯的过程,也就是说一定要制订一个阶段性的学习计划,比如用半年或一年的时间去学它。
很多学高数屡战屡败的朋友可能都有这样的经历:准备考比如十月的高数,那么就去报班读,但读到一小半时可能由于种种原因就读不下去了,高数也只学到积分那章就放弃了,心里可能想,哎高数那么难,留到明年再考吧。借口一有,马上放弃十月的考试了。
那等明年,这种情况可能又会重复一次,从而周而复始,于是所有科目都过了,只剩下高数这个硬骨头,心理自然就生出高数好难的念头。这种情况在我以前上课时经常发生,刚开课时,教室挤满人,但课程还没上到一半人就走掉一半了,最后能坚持下来的人寥寥无几,而最后能通过考试的恰好就是这些坚持下来的学生。
所以有时我就学员当准备考高数时,最好只报考高数一门,全心投入去学习它,当你中途感到吃力坚持不下时,不要找任何借口逃脱,而要想想问题出在哪里,为什么学不下去?找到问题所在然后克服它,那最后一定能成功! 二)高数二的学习与高数一相比有很大的差异。首先说一说它们之间的异同,第一点,高数二不需要太多的基础知识,只是概率里有一点积分和导数的简单计算;第二点,高数一整个内容由微分扣积分这条线贯穿始终,而高数二内容连贯性不是很强;第三点,高数一学习要从根本上加强对基本概念和理论的理解,拓宽解题思路,加强例题典型题的分析和综合练习,并能对典型题举一反三,所以需要做大量题,而高数二要加强基本概念的理解,并能掌握书本上的基本例题即可,不需举一反三,考试题目特别是概率的大题大多千篇一律,无非就是将书上例题数字改一改而已,所以不需做大量题,只需将书上题目“真正”会做即可,如果你能找到大量的题的话,你仔细看看,肯定是千篇一律的。
根据以上几点,我们再来谈谈高数二的学习,首先学习过程中,一定要将每一章内容、概念、定理等真正理解,这可以通过多看几遍书来达到。看书时一定要静下心来,因为高数二内容较难理解,当看不下去时一定不要放弃,要硬着头皮往下读。
这里要注意一点的是,高数二中可能会有很多对。
你说的是哪些公式呀?说真的,我觉得数学公式很好记,可能是我自己做得数学题目比较多吧!!我建议你多做点题目,熟能生巧~~~ 牢固地掌握基础知识是学好数学的必要条件,所谓数学基础知识,应包括概念、定理、公式和法则等,其中数学公式是重要的组成部分,占十分重要的地位。
这是因为公式是概念的继续和发展,公式是定理定律的集中表现,公式凝聚着数学中的全部精华,同时它又是我们解题或证题的依据和工具。因此,对于数学公式只有记准、记牢,并能熟练应用,才有可能形成技能,从而把数学学好。
怎样才能记牢数学公式呢? 从公式的来源进行记忆。有些同学常常侧重于记忆和运用公式的结论,而对公式的来源不够重视,甚至错误地认为推证公式是老师的事情,自己只要记住就行了。
所以不少同学对一些基本公式不会推导。这样长期下去,势必导致对公式死记硬背,由于对公式来源茫然无知,所以一旦把公式忘记就必然无从想起。
因此必须在公式推证过程中,对公式的来龙去脉有较清楚的了解,这样不但在学习中增加许多知识,还能有助于对公式的记忆和运用。掌握了公式的推证方法,明确了公式的脉络,万一某个公式忘记了,也能迅速地推证出来。
从公式的本质特征进行记忆。记忆是伴随着理解的加深而逐步加深的,因此,对公式的认识不能停留在表面的认识上,也就是说,不但要重视公式的来源,而且也要重视公式本身的内在规律,公式的共性与个性,从而有利于掌握和记忆公式。
这就要求我们必须透过数量关系的表面形式,深入地理解公式的实质极其全部含义,掌握它们的基本特征和重要性质。要认识公式就必须对公式进行细致的分析和研究。
首先可把公式的条件增加、减少或变更,看对公式有何影响,结论产生什么变化,这样就反复认识条件和结论的关系,就可以比较好地克服忽视公式条件而盲目套用公式的现象。其次,也可对公式进行恒等变形,导出新公式。
当然新公式与原公式,形式不同,本质还是一样的。这样就能进一步加深对公式的认识,从而达到牢记的目的。
利用公式的本质特征记忆公式,还应有意识地训练自己能够用语言准确地叙述公式,这样有利于对公式的理解和记忆。如果能用简练明确的口诀把公式中主要数量关系突出地表达出来,这更是记忆公式行之有效的方法。
从公式之间的比较进行记忆。对于有联系的或容易混淆的公式,可以根据公式的不同特点,进行适当的对照比较,揭示其内在联系,找到它们的异同点,这样一方面可以对公式有更加清晰的印象,另一方面又可有效地防止某些类似公式的混淆。
1、把相似的公式进行对比。如扇形面积公式和三角形面积公式很相似,只是扇形的底是弧线,三角形的底是直线,通过这样对比就可借助于三角形面积公式记住扇形面积公式了。
2、把同类公式进行对比。如把平行四边形、长方形、正方形的面积公式比较出它们之间的联系与差别,就便于记忆了。
3、把具有从属关系的公式进行对比。如把圆的面积公式和扇形面积公式进行比较,找出异同点,就能帮助牢固地记忆。
当然,要真正达到熟记,还要及时复习,反复运用,在运用中牢固掌握。 理解记忆。
多做这一类型的题目。 熟能生巧嘛。
祝沵学得成功! 做题不要看课本.想一下. 复杂的数学公式都是由简单的推倒出来的,对于比较复杂的数学公式,而推倒过程又相对比较简单,我推荐你不要死记,会推倒过程就行了,考试的时候在推倒,这样也不容易错 高考数学知识速记 根据多年的实践,总结规律繁化简;概括知识难变易,高中数学巧记忆。 言简意赅易上口,结合课本胜一筹。
始生之物形必丑,抛砖引得白玉出。 一、《集合与函数》 内容子交并补集,还有幂指对函数。
性质奇偶与增减,观察图象最明显。 复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。
函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数; 正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴; 求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。 幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数, 奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
、《三角函数》 三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割; 中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角, 顶点任意一函数,等于后面两根除。
诱导公式就是好,负化正后大化小, 变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变, 将其后者视锐角,符号原来函数判。
两角和的余弦值,化为单角好求值, 余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。 逆反原则作指导,。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.750秒