七年级到九年级数学必记重要知识点 1、过两点有且只有一条直线 2、两点之间线段最短 3、同角或等角的补角相等 4、同角或等角的余角相等 5、过一点有且只有一条直线和已知直线垂直 6、直线外一点与直线上各点连接的所有线段中,垂线段最短 7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8、如果两条直线都和第三条直线平行,这两条直线也互相平行 9、同位角相等,两直线平行 10、内错角相等,两直线平行 11、同旁内角互补,两直线平行 12、两直线平行,同位角相等 13、两直线平行,内错角相等 14、两直线平行,同旁内角互补 15、定理 三角形两边的和大于第三边 16、推论 三角形两边的差小于第三边 17、三角形内角和定理 三角形三个内角的和等于180° 18、推论1 直角三角形的两个锐角互余 19、推论2 三角形的一个外角等于和它不相邻的两个内角的和 20、推论3 三角形的一个外角大于任何一个和它不相邻的内角 21、全等三角形的对应边、对应角相等 22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23、角边角公理( ASA)有两角和它们的夹边对应相等的 两个三角形全等 24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25、边边边公理(SSS) 有三边对应相等的两个三角形全等 26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27、定理1 在角的平分线上的点到这个角的两边的距离相等 28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29、角的平分线是到角的两边距离相等的所有点的集合 30、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33、推论3 等边三角形的各角都相等,并且每一个角都等于60° 34、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35、推论1 三个角都相等的三角形是等边三角形 36、推论 2 有一个角等于60°的等腰三角形是等边三角形 37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38、直角三角形斜边上的中线等于斜边上的一半 39、定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42、定理1 关于某条直线对称的两个图形是全等形 43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2 47、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形 48、定理 四边形的内角和等于360° 49、四边形的外角和等于360° 50、多边形内角和定理 n边形的内角的和等于(n-2)*180° 51、推论 任意多边的外角和等于360° 52、平行四边形性质定理1 平行四边形的对角相等 53、平行四边形性质定理2 平行四边形的对边相等 54、推论 夹在两条平行线间的平行线段相等 55、平行四边形性质定理3 平行四边形的对角线互相平分 56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57、平行四边形判定定理2 两组对边分别相等的四边 形是平行四边形 58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60、矩形性质定理1 矩形的四个角都是直角 61、矩形性质定理2 矩形的对角线相等 62、矩形判定定理1 有三个角是直角的四边形是矩形 63、矩形判定定理2 对角线相等的平行四边形是矩形 64、菱形性质定理1 菱形的四条边都相等 65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66、菱形面积=对角线乘积的一半,即S=(a*b)÷2 67、菱形判定定理1 四边都相等的四边形是菱形 68、菱形判定定理2 对角线互相垂直的平行四边形是菱形 69、正方形性质定理1 正方形的四个角都是直角,四条边都相等 70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71、定理1 关于中心对称的两个图形是全等的 72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75、等腰梯形的两条对角线相等 76、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形 77、对角线相等的梯形是等腰梯形 78、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相。
初中数学知识点总结 一、基本知识 一、数与代数A、数与式:1、有理数有理数:①整数→正整数/0/负整数②分数→正分数/负分数 数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。④数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。 绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。
有理数的运算:加法:①同号相加,取相同的符号,把绝对值相加。②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。 减法:减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。 除法:①除以一个数等于乘以一个数的倒数。
②0不能作除数。 乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。 2、实数 无理数:无限不循环小数叫无理数 平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。 立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。
实数:①实数分有理数和无理数。②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。
③每一个实数都可以在数轴上的一个点来表示。 3、代数式 代数式:单独一个数或者一个字母也是代数式。
合并同类项:①所含字母相同,并且相同字母的指数也相同的项,叫做同类项。②把同类项合并成一项就叫做合并同类项。
③在合并同类项时,我们把同类项的系数相加,字母和字母的指数不变。 4、整式与分式 整式:①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。 幂的运算:AM+AN=A(M+N) (AM)N=AMN (A/B)N=AN/BN 除法一样。
整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。 公式两条:平方差公式/完全平方公式 整式的除法:①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。 分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
方法:提公因式法、运用公式法、分组分解法、十字相乘法。 分式:①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。 分式的运算: 乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。 加减法:①同分母分式相加减,分母不变,把分子相加减。
②异分母的分式先通分,化为同分母的分式,再加减。 分式方程:①分母中含有未知数的方程叫分式方程。
②使方程的分母为0的解称为原方程的增根。 B、方程与不等式 1、方程与方程组 一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。
②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。 解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。
二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。 二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。
适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。 二元。
一、复习方式 分三轮复习。
第一轮复习为基础知识的单元、章节复习。通过第一轮的复习,使学生系统掌握基础知识、基本技能和方法,形成明晰的知识网络和稳定的知识框架。
我们从双基入手,紧扣中考知识点来组织单元过关。结合学生的实际情况,我们实行严格的单元过关,对C层和B层的部分学生实行勤查、多问、多反复的方式巩固基础知识,在知识灵活化的基础上,还注重了培养学生阅读理解、分析问题、解决问题的能力。
第二轮复习打破章节界限实行大单元、小综合、专题式复习。第二轮复习绝不是第一轮复习的压缩,而是一个知识点综合、巩固、完善、提高的过程。
复习的主要任务及目标是:完成各部分知识的条理、归纳、糅合,使各部分知识成为一个有机的整体,力求实现基础知识重点化,重点知识网络化,网络知识题型化,题型设计生活化。在这一轮复习中,要以数学思想、方法为主线,学生的综合训练为主体,减少重复,突出重点。
在数学的应用方面,注意数学知识与生活、与其他学科知识的融合,穿插专题复习(如图表信息专题、经济决策专题、开放性问题、方案设计型问题、探索性问题等),向学生渗透题型生活化的意识,以此提高学生对阅读理解题的理解能力。 第三轮复习是知识、能力深化巩固的阶段,复习资料的组织以中考题及模拟题为主,回扣教材,查缺补漏,进行强化训练。
同时,要教给学生一些必备的应试技巧和方法,使学生有足够的自信从容地面对中考。由于考前的学习较为紧张,往往有部分学生易焦虑、浮躁,导致学习效率下降,在此阶段还应注意对学生的心态及时作出调整,使他们能以最佳的心态参加中考。
中考数学复习黄金方案 打好基础提高能力初三复习时间紧、任务重,在短短的时间内, 如何提高复习的效率和质量,是每位初三学生所关心的。为此,我谈 一些自己的想法,供大家参考。
一 、扎扎实实打好基础 1、重视课本,系统复习。初中数学基础包括基础知识和基本技能 两方面。
现在中考命题仍然以基础知识题为主,有些基础题是课本上 的原题或改造,后面的大题虽是“高于教材”,但原型一般还是教材 中的例题式习题,是教材中题目的引申、变形或组合,复习时应以课 本为主。 例如辽宁省2004年中考第17题:AB是圆O的弦,P是圆O的弦AB上的 一点,AB 10cm,AP 4cm,OP 5cm,则圆O的半径为() cm。
本题是初三几何课本的原题。这样的题还很多,它告诉我们学好 课本的重要性。
在复习时必须深钻教材,把书中的内容进行归纳整理, 使之形成自己的知识结构,尤其课后的读一读,想一想,有些中考题 就在此基础上延伸、拓展。一味地搞题海战术,整天埋头做大量练习 题,其效果并不佳,所以在做题中应注意解题方法的归纳和整理,做 到举一反三。
2、夯实基础,学会思考。中考有近70分为基础题,若把中档题和 较难题中的基础分计入,占的比值会更大。
所以在应用基础知识时应 做到熟练、正确、迅速。上课不能只听老师讲,要敢于质疑,积极思 考方法和策略,应通过老师的教,自己“悟”出来,自己“学”出来, 尤其在解决新情景问题的过程中,应感悟出如何正确思考。
3、重视基础知识的理解和方法的学习。基础知识既是初中所涉及 的概念、公式、公理、定理等。
掌握基础知识之间的联系,要做到理 清知识结构,形成整体知识,并能综合运用。例如:中考涉及的动点 问题,既是方程、不等式与函数问题的结合,同时也常涉及到几何中 的相似三角形、比例推导等等。
中考数学命题除了重视基础知识外,还十分重视对数学方法的考 查。如:配方法、换元法、判别式等操作性较强的方法。
二、综合运用知识,提高自身各种能力 初中数学基本能力有运算能力、思维能力、空间想像能力以及体 现数学与生产、生活相关学科相联系的能力等等。 1、提高综合运用数学知识解题的能力。
要求同学们必须做到能把 各个章节中的知识联系起来,并能综合运用,做到触类旁通。目前阶 段应根据自身实际,有针对性地复习,查漏补缺做好知识归纳、解题 方法的归纳。
纵观中考中对能力的考查,大致可分成两个阶段:一是考查运算 能力、空间想像能力和逻辑思维能力及解决纯数学问题的能力;二是 强调阅读能力、创新探索能力和数学应用能力。平时做题时应做到: 1)深刻理解知识本质,平时加强自己审题能力的锻炼,才能做到变更 命题的表达形式后不慌不忙,得心应手。
2)寻求不同的解题途径与变 通思维方式。注重自己思维的广阔性,对于同一题目,寻找不同的方 法,做到一题多解,这样才有利于打破思维定势,开拓思路,优化解 题方法。
3)变换几何图形的位置、形状、大小后能找到图形之间的联 系,知道哪些量没变、哪些量已改变。例如:折叠问题中折叠前后图 形全等是解决问题的关键。
2、狠抓重点内容,适当练习热点题型。多年来,初中数学的“方 程”、“函数”、“直线型”一直是中考重点内容。
“方程思想”、“函数思想”贯穿于试卷始终。另外,“开放题”、“探索题”、“阅读理解题”、“方案设计”、“动手操作”等问题也是近几年中 考的热点题型,这些中考题大部分来。
初中数学的基础知识高中数学都需要。
初中数学内容: 代数部分: 1、有理数、无理数、实数。 2、整式、分式、二次根式。
3、一元一次方程、一元二次方程、二(三)元一次方程组、二元二次方程组、分式方程、一元一次不等式。 4、函数(一次函数、二次函数、反比例函数)。
5、统计初步。 几何部分: 1、线段、角。
2、相交线、平行线。 3、三角形。
4、四边形。 5、相似形。
6、圆。 高中数学是全国高中生学习的一门学科。
包括《集合与函数》《三角函数》《不等式》《数列》《复数》《排列、组合、二项式定理》《立体几何》《平面解析几何》等部分。 高中数学知识框架: 在必修一里面主要学习了集合,包含集合的含义与表示,集合的基本关系,集合的基本运算;在剩下的几个章节则学习了几个重要的基本初等函数 在必修二里面则是学习了立体几何初步:包含简单几何体与简单多面体的三视图,空间图形的位置关系。
部分规则空间几何体的体积与表面积,第二章以数形结合的形式向大家介绍了圆和直线的性质,理科生则深入学习了空间直角坐标系 在必修三部分是对简单的概率论与数理统计进行了学习。和算法初步进行了学习。
必修四开端又学习了另一种基本初等函数--三角函数,在高中阶段主要是学习了,正弦,余弦,正切三个三角函数的性质与图像及三者之间的关系。包括三角函数限,弧度制,诱导公式等。
第二章则是学习了平面向量这一数学工具,这一章学习了向量的表示,向量的模和单位化,数量积和简单应用。在第三章又深入学习了三角函数的半角公式,和角,差角公式,2倍角公式。
在进一步延伸后又学习了降幂公式。 必修五第一章主要讲了等差与等比数列的性质,通项公式与前N项和的运算,第二章属平面解析几何的内容,主要介绍了正弦,余弦定理,第三章主要学习了不等式的性质与概念与LP问题初步(图解法)。
选修2-1第一章是常用逻辑用语,主要讲述了充分条件,必要条件和“或,且,非”等逻辑量词,在第二章节是又进一步讲述了空间解析几何与向量代数,理科生又多学习了二面角定理。第三章则是介绍了圆锥曲线有关知识,包括椭圆,双曲线,抛物线的定义性质,图像等。
选修2—2:第一章是推理与证明:介绍了归纳推理与类比推理,综合法,分析法,反证法,和归纳法。第二章和第三章则是导数的有关性质与运用。
第四章介绍了简单的微积分性质与运用(曲边梯形面积和与简单几何体体积);第五章介绍了数系的扩充。主要介绍了复数的表示,性质,运算等 选修2-3:主要为理科生学习,第一章为排列与组合,主要学习了科学技术原理,排列,组合和二项式定理。
第二章则介绍了二项分布,正态分布等常见的概率分布,第三章则是介绍了独立性检验与简单的线性回归分析。
去百度文库,查看完整内容>
内容来自用户:扭摆的青春
第一章数与式
考点一、概念及分类1、实数按定义分类正整数
整数零
有理数负整数实数正分数
分数有限小数和无限循环小数
负分数
正无理数
无理数无限不循环小数
负无理数
2、实数按正负分类
正整数
正有理数
正实数正分数
正无理数
实数零负整数
负有理数
负分数
负实数
负无理数
在理解无理数时,要抓住“无限不循环”这一本质,归纳起来有四类:
(1)开方开不尽的数,如等;
(2)有特定意义的数,如圆周率π,或化简后含有π的数,如+8等;
(3)有特定结构的数,如0.1010010001…等,一定要注意后面要带省略号;
(4)某些三角函数,如sin60o等
考点二、数轴、倒数、相反数、绝对值1、数轴定义:规定了原点、正方向和单位长度的直线叫做数轴。对应:实数和数轴上的点是一一对应的关系。2、倒数
如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。a的倒数为。3、相反数:如果a与b互为相反数,则有a+b=0,a=—b,反之亦成立。相反数等于本身的数是0,任何数都有相反数。a的相反数为-a。
4、绝对值
一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a(4.考点三、因式分解(1((考点一、平面直角坐标系点(3如果自变量的取值范围是反过来,解一元二次方程(1一条线段可用它的端点的两个大写字母
小学数学学习概述数学学习主要是对学生数学思维能力的培养。
这要以数学基础知识和基本技能为基础,以数学问题为诱因,以数学思想方法为核心,以数学活动为主线,遵循数学的内在规律和学生的思维规律开展教学。学习类型分析1。
方式性分类(1)接受学习与发现学习定义:将学习的内容以定论的形式呈现给学习者的学习方式。 模式:呈现材料—讲解分析—理解领会—反馈巩固(2)发现学习定义:向学习者提供一定的背景材料,由学习者独立操作而习得知识的学习方式。
模式:呈现材料—假设尝试—认知整合—反馈巩固。2。
知识性分类一(1)知识学习定义:以理解、掌握数学基础知识为主的学习活动。 过程:选择—领会—习得——巩固(2)技能学习定义:将一连串(内部或外部的)动作经练习而形成熟练的、自动化的反应过程。
过程:演示—模仿—练习—熟练—自动化(3)问题解决学习以关心问题解决过程为主、反思问题解决思考过程的一种数学学习活动。提出问题—分析问题—解决问题—反思过程3。
知识性分类二(1)概念性(陈述性)知识的学习把数学中的概念、定义、公式、法则、原理、定律、规则等都称为概念性知识。概念学习:同化与形成。
利用已有概念来学习相关新概念的方式,称概念同化;依靠直接经验,从大量的具体例子出发,概括出新概念的本质属性的方式,称为概念形成。 概念形成是小学生获得数学概念的主要形式。
(2)技能性(程序性)知识的学习小学数学技能主要是运算技能。运算技能的形成分为三个阶段:①认知阶段:“引导式”的尝试错误。
从老师演算例题或自学法则中初步了解运算法则,在头脑中形成运算方法的表征。②联结阶段:法则阶段,即按法则一步步地运算,保证算对(使用法则解决问题,陈述性知识提供了基本的操作线索)—程序化阶段(将相关的小法则整合为整体的法则系统,此时概念性知识已退出),能算得比较快速正确。
③自动化阶段:更清楚更熟练地应用第二阶段中的程序,通过较多的练习,不再思考程序,达到一定程序的自动化,获得了运算的速度和较高的正确率。(3)问题解决(策略性知识)的学习通过重组所掌握的数学知识,找出解决当前问题的适用策略和方法,从而获得解决问题的策略的学习。
小学生解决问题的主要方式,一是尝试错误式(又称试误法),即通过进行无定向的尝试,纠正暂时性尝试错误,直至解决问题;二是顿悟式(也称启发式),好像答案或方法是突然出现的,而实际上是有一定的“心向”作基础的,这就是问题解决所依据的规则、原理的评价和识别。 4。
任务性分类(1)记忆操作类学习如口算、尺规作(画)图和掌握基本的运算法则并能进行准确计算等。(2)理解性的学习如认识并掌握概念的内涵、懂得数学原理并能用于解释或说明、理解一个数学命题并能用于推得新命题。
(3)探索性的学习如需要让学生经过自己探索,发现并提出问题或学习任务,让学生通过自己的探究能总结出一个数学规律或规则,让学生通过自己的探究过程而逐步形成新的策略性知识等。 小学生数学认知学习一、小学生数学认知学习的基本特征1。
生活常识是小学生数学认知的起点要在儿童的生活常识和数学知识之间构建一座桥梁,让儿童从生活常识和经验出发,不断通过尝试、探索和反思,从而达到“普通常识”的“数学化”。2。
小学生数学认知是一个主体的数学活动过程数学认知过程要成为一个“做数学”的过程,让儿童从生活常识出发,在“做数学”的过程中,去发现、了解、体验和掌握数学,去认识数学的价值、了解数学的特性、总结数学的规律,去学会用数学、提高数学修养、发展数学能力。 3。
小学生数学认知思维具有直观化的特征由于一方面儿童生活常识是其数学认知的基础,另一方面儿童思维是以直观具体形象思维为主,所以要以直观为主要手段,让儿童理解并构建起数学认知结构。4。
小学生数学认知是一个“再发现”和“再创造”的过程小学生的数学学习,主要的不是被动的接受学习,而是主动的“再发现”和“再创造”学习的过程。 要让他们在数学活动或是实践中去重新发现或重新创造数学的概念、命题、法则、方法和原理。
二、小学生数学认知发展的基本规律1。小学生数学概念的发展(1)从获得并建立初级概念为主发展到逐步理解并建立二级概念(2)从认识概念的自身属性逐步发展到理解概念间的关系(3)数学概念的建立受经验的干扰逐渐减弱2。
小学生数学技能的发展(1)从依赖结构完满的示范导向发展到依赖对内部意义的理解(2)从外部的展开的思维发展到内部的压缩的思维(3)数感和符号意识的逐步提高,支持着运算向灵活性、简洁性和多样性发展3。小学生空间知觉能力的发展(1)方位感是逐步建立的(2)空间概念的建立逐渐从外显特征的把握发展到对本质特征的把握(3)空间透视能力是逐步增强的4。
小学生数学问题解决能力的发展(1)语言表述阶段(2)理解结构阶段(3)多级推理能力的形成(4)符号运算阶段小学生数学能力的培养一、数学能力概述1。能力概述能力是指个体能胜任某种活动所具有的心理特征2。
数学能力数学能力是。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.100秒