无线电测向一般有以下几种方法:
2.1、幅度比较式测向体制
幅度比较式测向体制的工作原理是:依据电波在行进中,利用测向天线阵或测向天线的方向特性,对不同方向来波接收信号幅度的不同,测定来波方向。 幅度比较式测向体制的特点:测向原理直观明了,一般来说系统相对简单,体积小,重量轻,价格便宜。存在间距误差和极化误差,抗波前失真的能力受到限制。频率覆盖范围、测向灵敏度、准确度、测向时效、抗多径能力和抗干扰能力等重要指标,要根据具体情况做具体分析。
2.2、干涉仪测向体制
干涉仪测向体制的测向原理是:依据电波在行进中,从不同方向来的电波到达测向天线阵时,在空间上各测向天线单元接收的相位不同,因而相互间的相位差也不同,通过测定来波相位和相位差,即可确定来波方向。在干涉仪测向方式中,是直接测量测向天线感应电压的相位,而后求解相位差,其数学公式与幅度比较式测向的公式十分相似。 相关干涉仪测向:是干涉仪测向的一种,它的测向原理是:在测向天线阵列工作频率范围内和360度方向上,各按一定规律设点,同时在频率间隔和方位间隔上,建立样本群,在测向时,将所测得的数据与样本群进行相关运算和插值处理,以获得来波信号方向。 干涉仪测向体制的特点:采用变基线技术,可以使用中、大基础天线阵,采用多信道接收机、计算机和FFT技术,使得该体制测向灵敏度高,测向准确度高,测向速度快,可测仰角,有一定的抗波前失真能力。该体制极化误差不敏感。干涉仪测向是当代比较好的测向体制,由于研制技术较复杂、难度较大,因此造价较高。干涉仪测向对接收信号的幅度不敏感,测向天线在空间的分布和天线的架设间距,比幅度比较式测向灵活,但又必须遵循某种规则。例如:可以是三角形,也可以是五边形,还可以是L形等。
2.3、多普勒测向体制
多普勒测向体制的测向原理:依据电波在传播中,遇到与它相对运动的测向天线时,被接收的电波信号产生多普勒效应,测定多普勒效应产生的频移,可以确定来波的方向。 为了得到多普勒效应产生的频移,必须使测向天线与被测电波之间做相对运动,通常是以测向天线在接收场中,以足够高的速度运动来实现的,当测向天线完全朝着来波方向运动时,多普勒效应频移量(升高)最大。 多普勒测向,通常不是直接旋转测向天线,因为这在工程上难于实现,它是将多个天线架设在同心圆的圆周上,电子开关顺序快速接通各个天线,等效于旋转测向天线。人们称这种测向机为准多普勒测向机。 多普勒测向体制的特点:可以采用中、大基础天线阵,测向灵敏度高,准确度高,没有间距误差,极化误差小,可测仰角,有一定的抗波前失真能力。多普勒测向体制的缺欠是抗干扰性能较差,如:遇到同信道干扰、调频调制干扰时,会产生测向误差。该体制尚在发展之中,改进会使系统变得复杂,造价会随之升高。
2.4、到达时间差测向体制
到达时间差测向体制的测向原理:依据电波在行进中,通过测量电波到达测向天线阵各个测向天线单元时间上的差别,确定电波到来的方向。它类似于比相式测向,但所测量的参数是时间差,而不是相位差。该测向体制要求被测信号具有确定的调制方式。 到达时间差测向体制的特点:测向准确度高,灵敏度高,测向速度快,极化误差不敏感,没有间距误差,测向场地环境要求低。但是抗干扰性能不好,载波必须有确定的调制,目前应用尚不普及。
2.5、空间谱估计测向体制
空间谱估计测向体制的测向原理:在已知座标的多元天线阵中,测量单元或多元电波场的来波参数,经过多信道接收机变频、放大,得到矢量信号,将其采样量化为数字信号阵列,送给空间谱估计器,运用确定的算法求出各个电波的来波方向、仰角、极化等参数。 空间谱估计测向体制的特点:空间谱估计测向技术可以实现对几个相干波同时测向;可以实现对同信道中、同时存在的多个信号,同时测向;可以实现超分辨测向;仅需要很少的信号采样,就能精确测向,因而适用于对跳频信号测向;可以实现高测向灵敏度和高测向准确度;测向场地环境要求不高,可以实现天线阵元方向特性选择及阵元位置选择的灵活性。以上空间谱估计测向的优点,正是传统测向方法长期以来存在的难题。 空间谱估计测向系统尚在研究试验阶段。在这个系统中,要求具备宽带测向天线,要求各个天线阵元之间和多信道接收机之间,电性能具有一致性。此外还需要简捷高精度的计算方法和高性能的运算处理器,以便解决实用化问题。
原理:无线电波在均匀介质 (如空气)中,具有直线传播的特点。只要测出电波传播的方向,就可以确定出信号源(发射台)所在方向。无线电测向是指通过无线电测向机测定发射台(或接收台)方位的过程,但是无线电测向运动中,要快速寻找隐蔽巧妙的信号源,必须掌握无线电波的传播规律。
应用:
无线电应用非常广泛,最早应用于航海中,使用摩尔斯电报在船与陆地间传递信息。无线电有着多种应用形式,包括无线数据网,各种移动通信以及无线电广播等。在航海、航空、政府、消防、警察、商业都使用、电视传媒、卫星导航系统、雷达、宇航动力、天文学等等很多方面等有广泛的应用。
无线电技术已经渗透到政治、军事、工业、农业、交通、文化、科技、教育和人们日常生活的各个领域,是一个国家综合国力和发展水平的标志。
侧向呢,也叫猎狐,你就是猎人,电台就是狐狸,现在狐狸藏在树林草丛里,手里的机器可以听到他们的声音我们管它叫测向机,有四种类型,短80米,长80米,短两米,长两米,是按照电台发射的电波频率分的。每个机型都有单独的频率,就是摩尔斯电码,这个可以问你的带队老师我这里就不说了,你要还不知道再问我。
比赛开始从起点出发,用测向机听没个电台的频率,转动测向机靠声音大小的变化确定方向。例如,测向入门一般用短80米机子(我们叫短八零),分为1,2,3,4,5,6,7,8,9,0,Mo(终点,你最后要到终点记成绩),每个台的频率不同,调到台的频率以后,比如现在时1号台,摩尔斯电码应该是 ·----(滴哒哒哒哒),用机子360°换一圈,找到最小声音的一条线(小音线),然后手握测向机在胸前,快速180转动,听一下小音线上的前/后哪面声音大,就是电台方向,你顺着跑就行啦~在寻找过程中不断测试直到找到电台。
测向挺累的,特别考验体力、耐心、细心、胆量,而且中途会受到其他签字设备干扰,有时候测不准,就靠经验啦~
比赛加油!
原发布者:期待未来的美好
无线电基础知识4.1无线电频段的划分4.2信号频谱带宽4.3传输线P158电磁波的波长与频率之间的关系?反比λ=c/fλ波长c光速f频率P159频率高低排列:X射线>;可见光>;无线电波高频率←→长波长P160频谱指什么?幅谱和相谱的总称。频谱描述的是(频率和幅度的大小)将各正弦分量的幅度按照其频率的高低依次排列,得到振幅频谱,简称幅谱。将各正弦分量的初相位按照其频率的高低依次排列,为相位频谱,简称相谱。P162将传送信号所必须的频率范围成为信号的带宽P163电话通信:3kHz;传输高品质音乐需要(传输带宽高):30Hz~16kHz;超短波无线电广播:150kHz;电视的每个频道:7~8MHz.P165λ>>L,短线。短线适用于集中参数电路。当λ≈L,长线。长线适用于分布参数电路。P167如果把传输线上的分布电容和分布电感看成是均匀分布的,为均匀无损耗电路。P167传输线上的特性阻抗?Zc=传播速度:V=P168为什么飞机上用同轴光缆?电阻损耗小,辐射损耗低。P170在传输线上导致能量消耗的是?“分布电阻”。传输线越长,电阻越大,损耗越大。这种损耗可以通过放大器加以解决。P168传输线的种类:平行双线传输线(200MHz以下)、同轴传输线(3GHz)。P171同轴传输线只能传输3GHz以下的信号,高于3GHz由波导来传输。P172当RL=ZC时,传输线上为什么波?只有入射波,没有反射波。高频信号呈波浪式地向终端传播,并且电能全部传
无线电测向活动 游戏规则: 无线电测向运动是竞技体育项目之一,也是业余无线电活动的主要内容。
它类似于众所周知的捉迷藏游戏,但它是寻找能发射无线电波的小型信号源(即发射机),是无线电捉迷藏,是现代无线电通讯技术与传统捉迷藏游戏的结合。大致过程是:在旷野、山丘的丛林或近郊、公园等优美的自然环境中,事先隐藏好数部信号源,定时发出规定的电报信号。
参加者手持无线电测向机,测出隐蔽电台的所在方向,采用徒步方式,奔跑一定距离,迅速、准确地逐个寻找出这些信号源。以在规定时间内,找满指定台数、实用时间少者为优胜。
通常,我们把实现巧妙隐藏起来的信号源比喻成狡猾的狐狸,故此项运动又称无线电“猎狐”或抓“狐狸”。 无线电测向原理: 1.无线电波 在无线电技术中,我们把能够向四周空间传播一定距离的交替变化的磁场与电场,叫做无线电波,也称电磁波,简称电波。
无线电波属于电磁波中频率较低的一种。我国目前开展的无线电测向运动常见的两个频段: 1)3.5MHz——3.6MHz 80米波段(83.3——85.7) 2)144MHz——146MHz 2米波段(2.08——2.055) 测向仪的使用方法: 2. 80米波段测向机持机方法 右手握机,大拇指靠近“单、双向开关”,其它四指握向测向机,手背一面是大音面;松肩、垂肘,测向机举至胸前,距人体约25厘米左右,尽量保持测向机与地面垂直。
调整测向机时,用右手调整各旋钮和扳动各开关(单、双向开关由右手大拇指控制)。测单向时,为了测线准确,找准方位物,允许将持机臂伸直,将测向机抬高与眼平,进行“瞄准” 当磁棒轴线的垂直方向对着电台时耳机声音最大,此时磁性天线正对着电台的那个面称大音面,或大音点。
利用大音面我们可粗略确定信号源所在的方向(面)。 当磁棒轴线正指电台时,耳机声音最小或完全无声,此时称小音点或哑点。
利用哑点可以精确地得到电台的位置。 3、测向机的信号(黑点表示长音“滴”,横线表示短音“滴”) 5测向方法总汇: 1、幅度测向法 幅度测向法是历史最悠久的测向方法。
常见的幅度测向法采用一付有方向性的天线,通过旋转天线,找到信号最强的方向(大音点测向法)或者信号最弱的方向(小音点测向法),就可以确定来波方向。业余无线电测向(猎狐)均基于幅度测向法。
采用旋转天线的方法测向,设备十分简单。对于无线电爱好者而言,可以用具有方向性的八木-宇田天线,接上具有测量信号强度功能的接收机(例如对讲机和可变衰减器的组合)构成测向系统。
这种测向系统适合于一个人携带使用,在接近发射源的时候最为有效。由于这种测向系统需要人工或者电动旋转天线,它的响应时间很长,如果需要捕捉短促信号持续时间很短,或者信号强度本来就在不停变化,则难以取得有效结果。
为了克服旋转天线响应时间长的缺点,发展了沃特森-瓦特测向机。它用两付相互正交的艾德考克天线接收无线电信号,两付天线的信号分别送入两台接收机,并将接收机的电压输出(与信号幅度线性相关)分别送入示波器的X、Y偏转器,即可在显示屏上显示一条代表来波方向的亮线。
这种测向机结构同样较为简单,有兴趣的爱好者可以自制。 2、相位测向法 相位测向法能够获得较高的测量精度。
如果在一个平面上设立至少两个相距很近的天线,由于天线间存在距离,它们收到的无线电信号就存在相位差。利用专门的相位比较电路或者数字信号处理技术,可以精确的测得相位差的数值。
根据相位差,就可以计算出电波的方向。上述测向方法是相位测向法的一种,叫做干涉仪测向法。
除了这种方法之外,还可以用多普勒频移原理构成相位测向系统。在一个圆周上安装若干天线,采用电子开关按照一定的顺序沿着圆周选通这些天线,这时,这个沿圆周排列的天线阵就可以等效为一付沿圆周旋转的全向天线。
对于一束电波而言,天线旋转到圆周的不同位置,由于多普勒现象的影响,天线输出的信号的相位将各不相同。通过比较信号的相位,也可以计算出来波方向。
相关干涉仪测向是在干涉仪基础上发展起来的。为了测得较高的频率而不发生相位混叠,干涉仪的每一根天线必须靠得很近,天线之间不可避免要产生相互影响,使得相位差并不能完全代表来波的方向。
为了克服这个缺陷,人们不再直接通过测量相位差来测量来波方向,而是先在标准的环境下,记录围绕天线一周的不同来波在天线上反映出来的相位关系,做成一个数据库。在实际测向的时候,任何一个来波会在天线阵的不同天线上反映出特有的相位关系。
通过查找,找到数据库中与实际测向中遇到的相位关系最相符合(相关)的一组实验数据,将获得这组实验数据时的来波方向作为实际测向的结果。相关干涉仪的发明是无线电测向技术中最伟大的发明之一,它巧妙的克服了天线带来的误差,使测向准确度大幅度提高。
目前,我国无线电管理机构的测向站几乎全部安装了相关干涉仪。 相位测向法的设备比较复杂,除多普勒测向机外,一般爱好者难以自制。
3、空间谱估计测向法 空间谱估计测向法的理论早在20世纪60年代末就开始研究,但是由于无法制造高同一性的多信道接收机。
无线电通信中,为了接收电台的功率和确保通讯质量,人们致力于研究电磁波的定向发射和接收。
其中关键部分便是定向天线的研究。定向天线的研究和应用,为无线电测向奠定了基础。
无线电测向运动是竞技体育项目之一,也是无线电活动的主要内容。它类似于众所周知的捉迷藏游戏,但它是寻找能发射无线电波的小型信号源(即发射机),是无线电捉迷藏,是现代无线电通讯技术与传统捉迷藏游戏的结合。
大致过程是:在旷野、山丘的丛林或近郊、公园等优美的自然环境中,事先隐藏好数部信号源,定时发出规定的电报信号。参加者手持无线电测向机,测出隐蔽电台的所在方向,采用徒步方式,奔跑一定距离,迅速、准确地逐个寻找出这些信号源。
以在规定时间内,找满指定台数、实用时间少者为优胜。通常,我们把实现巧妙隐藏起来的信号源比喻成狡猾的狐狸,故此项运动又称无线电“猎狐”或抓“狐狸”。
无线电测向竞赛十分有趣,像玩捉迷藏游戏似的,运动员忙碌地测听、奔跑,漫山遍野地去搜寻一个个隐蔽电台。无线电测向竞赛又十分神秘,竞赛区域保密,电台位置保密,运动员在竞赛过程中独立思考和运动,得不到教练员的指导,也不许接受任何人的任何帮助和提示。
只有测向机是运动员的忠实伙伴,向“主人”指示那一只只“狐狸”的藏身之处,引导“主人”去一一抓获。 在整个活动之中,你的团队将更加团结,你处理问题的方式方法也会从中得到更多的启示,让我们暂时放下手中的工作,透入自然的怀抱,开始一段心灵的历练,你会发现你的生活,你的工作,你对人生的态度,会由此改变。
无线电测向运动 —集体育、科技、趣味于一体的运动项目 什么是无线电测向运动? 无线电测向运动是竞技体育项目之一,也是无线电活动的主要内容。它类似于众所周知的捉迷藏游戏,但它是寻找能发射无线电波的小型信号源(即发射机),是无线电捉迷藏,是现代无线电通讯技术与传统捉迷藏游戏的结合。
大致过程是:在旷野、山丘的丛林或近郊、公园等优美的自然环境中,事先隐藏好数部信号源,定时发出规定的电报信号。参加者手持无线电测向机,测出隐蔽电台的所在方向,采用徒步方式,奔跑一定距离,迅速、准确地逐个寻找出这些信号源。
以在规定时间内,找满指定台数、实用时间少者为优胜。通常,我们把实现巧妙隐藏起来的信号源比喻成狡猾的狐狸,故此项运动又称无线电“猎狐”或抓“狐狸”。
体育性、科技性、趣味性是:无线电测向的突出特点 参加该项活动,除要进行身体训练外,还需要学习无线电方面的知识,要掌握测向机或其它电子制作技能,这无疑将丰富和延伸其课堂知识,使课堂学习更轻松。而且在当今电子技术无孔不入的时代,会因为有了这一技之长而终生受益。
由于无线电测向既不是纯科技性的室内制作,又不是固定场地上的单一奔跑,而是充分体现了理论与实践、动手与动脑、室内与户外、体能与智力的结合,是在大自然的怀抱中有机地将科技、健身、休闲、娱乐融为一体。对于开阔视野、增长知识、增强体魄、磨炼意志,进行国防教育,培养独立思考和分析判断能力,促进青少年德、智、体、美、劳全面发展,丰富学校第二课堂内容及从应试教育向素质教育转化均十分有益,同时也符合中央关于“在青少年中普及科技”和实施《全民健身计划纲要》的精神,故备受学校和有关主管部门的重视,有不少地区制定了对取得一定成绩的运动员,在升学考试中给予加分录取的政策,就充分说明这一点。
同时也深得家长支持和青少年的喜爱。目前南京等地已将此项活动推向社会,引进家庭,他们利用双休日,回归大自然,开展社会和家庭“无线电猎狐游戏”,丰富了渡假内容,增添了家庭情趣。
国内竞赛和活动 目前我国开展的无线电测向活动主要有两类:一是适合在中小学普及的短距离测向。它可选择在树木较多、风景宜人的公园、校园、近郊进行,总距离为数百米。
每年一届由国家体育总局、国家教育部、中国科协、共青团中央、全国妇联五部委联合主办的全国青少年无线电锦标赛就进行该项目,并在比赛中设置高中、初中、小学组男、女个人赛、团体赛及测向机制作评比。二是符合国际规则并适合大、中学生开展的长距离80米短波波段(3.5MHz)及2米超短波波段(144 MHz)测向。
场地选择在起伏不超过200米、植被较好的地区,5部电台的总直线距离为5-10公里。每年一届由国家体育总局、国家教育部联合主办的全国无线电测向锦标赛即设置该项目。
此外,每年还举办约 10个全国青少年测向分区赛(由各地区申办,已举办过分区赛的有北京、上海、南京、武汉、长沙、广州、青岛、温州、厦门、东北、华东等赛区)和约 10期全国基层教练员指导员培训班(由各地申办)。各省市还可按自己的实际情况举办各种规模的比赛或各类培训班。
国际赛事 每双数年举行一届世界无线电测向锦标赛,截止在2006年年底,我国选手曾夺得过 11金、8银、8铜;亚太地区锦标赛已举办过五届,共获 35金、21银、18铜。 中国无线电测向队曾以辉煌的战果为国家争得了荣誉。
我国还经常派队参加法国、比利时、日本等。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.651秒