初中代数的教学要求①是: 1.使学生了解有理数、实数的有关概念,熟练掌握有理数的运算法则,灵活运用运算律简 化运算;会查平方表、立方表、平方根表、立方根表或用计算器代替算表。
2.使学生了解有关代数式、整式、分式和二次根式的概念,掌握它们的性质和运算法则, 能够熟练地进行整式、分式和二次根式的运算以及多项式的因式分解。 3.使学生了解有关方程、方程组的概念;灵活运用一元一次方程、二元一次方程组和一元 二次方程的解法解方程和方程组,掌握分式方程和简单的二元二次方程组的解法,理解一元 二次方程的根的判别式。
能够分析等量关系列出方程或方程组解应用题。 使学生了解一元一次不等式、一元一次不等式组的概念,会解一元一次不等式和一元一次不 等式组,并把它们的解集在数轴上表示出来。
4.使学生理解平面直角坐标系的概念,了解函数的意义,理解正比例函数、反比例函数、一次函数的概念和性质,理解二次函数的概念,会根据性质画出正比例函数、一次函数的图 象,会用描点法画出反比例函数、二次函数的图象。 5.使学生了解统计的思想,掌握一些常用的数据处理方法,能够用统计的初步知识解决一 些简单的实际问题。
6.使学生掌握消元、降次、配方、换元等常用的数学方法,解决某些数学问题,理解“特殊 ——一般——特殊”、“未知——已知”、用字母表示数、数形结合和把复杂问题转化成简单问 题等基本的思想方法。 7.使学生通过各种运算和对代数式、方程、不等式的变形以及重要公式的推导,通过用概 念、法则、性质进行简单的推理,发展逻辑思维能力。
8.使学生了解已知与未知、特殊与一般、正与负、等与不等、常量与变量等辩证关系,以 及反映在函数概念中的运动变化观点。了解反映在数与式的运算和求方程解的过程中的矛盾 转化的观点。
同时,利用有关的代数史料和社会主义建设成就,对学生进行思想教育。 教学内容①和具体要求如下。
(一)有理数 l·有理数的概念 有理数。数轴。
相反数。数的绝对值。
有理数大小的比较。 具体要求: (1)了解有理数的意义,会用正数与负数表示相反意义的量,以及按要求把给出的有理数 归类。
(2)了解数轴、相反数、绝对值等概念和数轴的画法,会用数轴上的点表示整数或分数(以 刻度尺为工具),会求有理数的相反数与绝对值(绝对值符号内不含字母)。 (3)掌握有理数大小比较的法则,会用不等号连接两个或两个以上不同的有理数。
2。有理数的运算 有理数的加法与减法。
代数和。加法运算律。
有理数的乘法与除法。倒数。
乘法运算律。有 理数的乘方。
有理数的混合运算。 科学记数法。
近似数与有效数字。平方表与立方表。
具体要求: (1)理解有理数的加、减、乘、除、乘方的意义,熟练掌握有理数的运算法则、运算律、运算顺序以及有理数的混合运算,灵活运用运算律简化运算。 (2)了解倒数概念,会求有理数的倒数。
(3)掌握大于10的有理数的科学记数法。 (4)了解近似数与有效数字的概念,会根据指定的精确度或有效数字的个数,用四舍五人 法求有理数的近似数;会查平方表与立方表。
(5)了解有理数的加法与减法、乘法与除法可以相互转化。 (二)整式的加减 代数式。
代数式的值。整式。
单项式。多项式。
合并同类项。 去括号与添括号。
数与整式相乘。整式的加减法。
具体要求: (1)掌握用字母表示有理数,了解用字母表示数是数学的一大进步。 (2)了解代数式、代数式的值的概念,会列出代数式表示简单的数量关系,会求代数式的 值。
(3)了解整式、单项式及其系数与次数、多项式次数、项与项数的概念,会把一个多项式 接某个字母降幂排列或升幂排列。 (4)掌握合并同类项的方法,去括号、添括号的法则,熟练掌握数与整式相乘的运算以及 整式的加减运算。
(5)通过用字母表示数、列代数式和求代数式的值、整式的加减,了解抽象概括的思维方 法和特殊与一般的辩证关系。 (三)一元一次方程 等式。
等式的基本性质。方程和方程的解。
解方程。 一元一次方程及其解法。
一元一次方程的应用。 具体要求: (1)了解等式和方程的有关概念,掌握等式的基本性质,会检验一个数是不是某个一元方 程的解。
(2)了解一元一次方程的概念,灵活运用等式的基本性质和移项法则解一元一次方程,会 对方程的解进行检验。 (3)能够找出简单应用题中的未知量和已知量,分析各量之间的关系,并能够寻找等量关 系列出一元一次方程解简单的应用题,会根据应用题的实际意义,检查求得的结果是否合理。
(4)通过解方程的教学,了解“未知”可以转化为“已知”的思想方法。 (四)二元一次方程组 二元一次方程及其解集。
方程组和它的解。解方程组。
用代人(消元)法、加减(消元)法解二元一次方程组。三元一次方程组及其解法举例。
一次方程组的应用。 具体要求: (1)了解二元一次方程的概念,会把二元一次方程化为用一个未知数的代数式表示另一个 未知数的形式,会检查一对数值是不是某个二元一次方程的一个解。
(2)了解方程组和它的解、解方程组等概念;会检验一对数值是不是某个二元一次方程组 的一个解。 (3)灵活运用代人。
一、知识点回顾
1、几何图形
从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形
圆柱(圆柱的侧面是曲面,底面是圆)
柱
生活中的立体图形 球 棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……
(棱柱的侧面是若干个小长方形构成,底面是多边形)
(按名称分) 锥 圆锥(圆锥的侧面是曲面,底面的圆)
棱锥(棱锥的侧面是若干个三角形构成,底面是多边形)
4、棱柱及其有关概念:
棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种
截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
可能出现的:锐角三角型、等边、等腰三角形, 正方形、矩形、非矩形的平行四边形、非等腰梯形、等腰梯形、
五边形、六边形、正六边形
不可能出现:钝角三角形、直角三角形、直角梯形、正五边形、七边形或更多边形
8 三视图
物体的三视图指主视图、俯视图、左视图。
主视图:从正面看到的图,叫做主视图。
左视图:从左面看到的图,叫做左视图。
俯视图:从上面看到的图,叫做俯视图。
注意:从立体图得到它的三视图是唯一的,但从三视图复原回它的立体图却不一定唯一。
9 多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。
1.从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形。
2.若用f表示正多面体的面数,e表示棱数,v表示顶点数,则有:f+v-e=2
弧:圆上A、B两点之间的部分叫做弧。
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
线与线相交得到点,面与面相交得到线,图形是由点、线、面构成的。
棱柱、棱锥中,任何相邻两个面的交线叫做棱。其中相邻两个侧面的交线叫做侧棱。
棱柱的棱与棱的交点叫做棱柱的顶点。棱锥的各侧棱的公共点叫做棱锥的顶点。
初一数学概念 实数: —有理数与无理数统称为实数。 有理数: 整数和分数统称为有理数。
无理数: 无理数是指无限不循环小数。 自然数: 表示物体的个数0、1、2、3、4~(0包括在内)都称为自然数。
数轴: 规定了圆点、正方向和单位长度的直线叫做数轴。 相反数: 只有符号不同的两个数互为相反数。
倒数: 乘积是1的两个数互为倒数。 绝对值: 数轴上表示数a的点与圆点的距离称为a的绝对值。
一个正数的绝对值是本身,一个负数的绝对值是它的相反数,0的绝对值是0。 一个数加0仍然得这个数。
数学定理公式 有理数的运算法则 ⑴加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。 ⑵减法法则:减去一个数,等于加上这个数的相反数。
⑶乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘都得0。 ⑷除法法则:除以一个数等于乘上这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。
角的平分线:从角的一个顶点引出一条射线,能把这个角平均分成两份,这条射线叫做这个角的角平分线。数学第一章相交线一、邻补角:两条直线相交所成的四个角中,有公共顶点,并且有一条公共边,这样的角叫做邻补角。
邻补角是一种特殊位置关系和数量关系的角,即邻补角一定是补角,但补角不一定是邻补角。二、对顶角:是两条直线相交形成的。
两个角的两边互为反向延长线,因此对顶角也可以说成“把一个角的两边反向延长而形成的两个角叫做对顶角”。对顶角的性质:对顶角相等。
三、垂直1、垂直:两条直线所成的四个角中,有一个是直角时,就说这两条直线互相垂直。其中一条叫做另一条的垂线,它们的交点叫做垂足。
记做a⊥b垂直是相交的一种特殊情形。2、垂线的性质:①过一点有且只有一条直线与已知直线垂直;②连接直线外一点与直线上各点的所有线段中,垂线段最短。
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。3、画法:①一靠(已知直线)②二过(定点)③三画(垂线)4、空间的垂直关系四、平行线1、平行线:在同一平面内,不相交的两条直线叫做平行线。
记做a‖b2、“三线八角”:两条直线被第三条直线所截形成的① 同位角:“同方同位”即在两条直线的上方或下方,在第三条直线的同一侧。② 内错角:“之间两侧”即在两条直线之间,在第三条直线的两侧。
③ 同旁内角“之间同旁”即在两条直线之间,在第三条直线的同旁。3、平行公理:经过直线外一点,有且只有一条直线与这条直线平行平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
4、平行线的判定方法① 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;② 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行;③ 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行;④ 平行于同一条直线的两条直线平行;⑤ 垂直于同一条直线的两条直线平行。5、平行线的性质:①两条平行线被第三条直线所截,同位角相等; ②两条平行线被第三条直线所截,内错角相等; ③两条平行线被第三条直线所截,同旁内角互补。
6、两条平行线的距离:同时垂直于两条平行线并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离。7、命题:判断一件事情的语句,叫做命题,由题设和结论两部分组成。
五平移1、平移:在平面内将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。说明:①、平移不改变图形的形状和大小,改变图形的位置;②“将一个图形沿某个方向移动一定的距离”意味着“图形上的每一点都沿着同一方向移动了相同的距离 ”这也是判断一种运动是否为平移的关键。
③图形平移的方向,不一定是水平的2、平移的性质:经过平移,对应线段、对应角分别相等,对应点所连的线段平行且相等。可以买参考书>,归纳的满全的。
七年级上册几何图形——计算公式大全
平面图形
名称
符号
周长C和面积S
正方形
a—边长
C=4a
S=a2
长方形
a和b-边长
C=2(a+b)
S=ab
三角形
a,b,c-三边长
h-a边上的高
s-周长的一半
A,B,C-内角
其中s=(a+b+c)/2
S=ah/2
=ab/2·sinC
=[s(s-a)(s-b)(s-c)]1/2
=a2sinBsinC/(2sinA)
四边形
d,D-对角线长
α-对角线夹角
S=dD/2·sinα
平行四边形
a,b-边长
h-a边的高
α-两边夹角
S=ah
=absinα
菱形
a-边长
α-夹角
D-长对角线长
d-短对角线长
S=Dd/2
=a2sinα
梯形
a和b-上、下底长
h-高
m-中位线长
S=(a+b)h/2
=mh
圆
r-半径
d-直径
C=πd=2πr
S=πr2
=πd2/4
扇形
r—扇形半径
a—圆心角度数
C=2r+2πr*(a/360)
S=πr2*(a/360)
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.199秒