• 首页
  • 作文
  • 散文
  • 故事
  • 古诗
  • 短文
  • 语录
  • 写作
  • 诗歌
  • 百科
  • 知识
  • 首页
  • 作文
  • 散文
  • 故事
  • 古诗
  • 短文
  • 语录
  • 写作
  • 诗歌
  • 百科
  • 知识
首页 » 基础知识 » 大数据平台搭建(大数据入门需学习哪些)

大数据平台搭建(大数据入门需学习哪些)

分类:基础知识 日期:2022-09-17 19:03 浏览:3 次

1.大数据入门需学习哪些基础知识

前言,学大数据要先换电脑:

保证电脑4核8G内存64位操作系统,尽量有ssd做系统盘,否则卡到你丧失信心。硬盘越大越好。

1,语言要求

java刚入门的时候要求javase。

scala是学习spark要用的基本使用即可。

后期深入要求:

java NIO,netty,多线程,ClassLoader,jvm底层及调优等,rpc。

2,操作系统要求

linux 基本的shell脚本的使用。

crontab的使用,最多。

cpu,内存,网络,磁盘等瓶颈分析及状态查看的工具。

scp,ssh,hosts的配置使用。

telnet,ping等网络排查命令的使用

3,sql基本使用

sql是基础,hive,sparksql等都需要用到,况且大部分企业也还是以数据仓库为中心,少不了sql。

sql统计,排序,join,group等,然后就是sql语句调优,表设计等。

4,大数据基本了解

Zookeeper,hadoop,hbase,hive,sqoop,flume,kafka,spark,storm等这些框架的作用及基本环境的搭建,要熟练,要会运维,瓶颈分析。

5,mapreduce及相关框架hive,sqoop

深入了解mapreduce的核心思想。尤其是shuffle,join,文件输入格式,map数目,reduce数目,调优等。

6,hive和hbase等仓库

hive和hbase基本是大数据仓库的标配。要回用,懂调优,故障排查。

hbase看浪尖hbase系列文章。hive后期更新。

7,消息队列的使用

kafka基本概念,使用,瓶颈分析。看浪尖kafka系列文章。

8,实时处理系统

storm和spark Streaming

9,spark core和sparksql

spark用于离线分析的两个重要功能。

10,最终方向决策

a),运维。(精通整套系统及故障排查,会写运维脚本啥的。)

b),数据分析。(算法精通)

c),平台开发。(源码精通)

自学还是培训?

无基础的同学,培训之前先搞到视频通学一遍,防止盲目培训跟不上讲师节奏,浪费时间,精力,金钱。

有基础的尽量搞点视频学基础,然后跟群里大牛交流,前提是人家愿意,

想办法跟大牛做朋友才是王道。

2.大数据平台在搭建时有哪些要注意的部分

大数据平台搭建的主要问题

1、稳定性 Stability

理论上来说,稳定性是分布式系统最大的优势,因为它可以通过多台机器做数据及程序运行备份以确保系统稳定。但也由于大数据平台部署于多台机器上,配置不合适,也可能成为最大的问题。

2、可扩展性 Scalability

如何快速扩展已有大数据平台,在其基础上扩充新的机器是云计算等领域应用的关键问题。在实际2B的应用中,有时需要增减机器来满足新的需求。如何在保留原有功能的情况下,快速扩充平台是实际应用中的常见问题。

3.怎么搭建大数据分析平台

未至科技魔方是一款大数据模型平台,是一款基于服务总线与分布式云计算两大技术架构的一款数据分析、挖掘的工具平台,其采用分布式文件系统对数据进行存储,支持海量数据的处理。

采用多种的数据采集技术,支持结构化数据及非结构化数据的采集。通过图形化的模型搭建工具,支持流程化的模型配置。

通过第三方插件技术,很容易将其他工具及服务集成到平台中去。数据分析研判平台就是海量信息的采集,数据模型的搭建,数据的挖掘、分析最后形成知识服务于实战、服务于决策的过程,平台主要包括数据采集部分,模型配置部分,模型执行部分及成果展示部分等。

4.怎么搭建大数据分析平台

1,大数据分析平台的特点数据摄取、数据管理、ETL和数据仓库:提供有效的数据入库与管理数据用于管理作为一种宝贵的资源。

Hadoop系统功能:提供海量存储的任何类型的数据,大量处理功率和处理能力几乎是无限并行工作或任务流计算在拉动特征:用于流的数据、处理数据并将这些流作为单个流。内容管理特征:综合生命周期管理和文档内容。

数据治理综合:安全、治理和合规解决方案来保护数据2,怎样去搭建大数据分析平台大数据分析处理平台就是整合当前主流的各种具有不同侧重点的大数据处理分析框架和工具,实现对数据的挖掘和分析,一个大数据分析平台涉及到的组件众多,如何将其有机地结合起来,完成海量数据的挖掘是一项复杂的工作。我们可以利用亿信一站式数据分析平台(ABI),可以快速构建大数据分析平台,该平台集合了从数据源接入到ETL和数据仓库进行数据整合,再到数据分析,全部在一个平台上完成。

我们可以看到亿信一站式数据分析平台ABI囊括了企业全部所需的大数据分析工具。ABI可以对各类业务进行前瞻性预测分析,并为企业各层次用户提供统一的决策分析支持,提升数据共享与流转能力。

5.如何快速全面建立自己的大数据知识体系

所谓的大数据平台不是独立存在的,比如百度是依赖搜索引擎获得大数据并开展业务的,阿里是通过电子商务交易获得大数据并开展业务的,腾讯是通过社交获得大数据并开始业务的,所以说大数据平台不是独立存在的,重点是如何搜集和沉淀数据,如何分析数据并挖掘数据的价值。

我可能还不够资格回答这个问题,没有经历过一个公司大数据平台从无到有到复杂的过程。不过说说看法吧,也算是梳理一下想法找找喷。

这是个需求驱动的过程。曾经听过spotify的分享,印象很深的是,他们分享说,他们的hadoop集群第一次故障是因为,机器放在靠窗的地方,太阳晒了当机了(笑)。

从简单的没有机房放在自家窗前的集群到一直到现在复杂的数据平台,这是一个不断演进的过程。对小公司来说,大概自己找一两台机器架个集群算算,也算是大数据平台了。

在初创阶段,数据量会很小,不需要多大的规模。这时候组件选择也很随意,Hadoop一套,任务调度用脚本或者轻量的框架比如luigi之类的,数据分析可能hive还不如导入RMDB快。

监控和部署也许都没时间整理,用脚本或者轻量的监控,大约是没有ganglia、nagios,puppet什么的。这个阶段也许算是技术积累,用传统手段还是真大数据平台都是两可的事情,但是为了今后的扩展性,这时候上Hadoop也许是不错的选择。

当进入高速发展期,也许扩容会跟不上计划,不少公司可能会迁移平台到云上,比如AWS阿里云什么的。小规模高速发展的平台,这种方式应该是经济实惠的,省了运维和管理的成本,扩容比较省心。

要解决的是选择平台本身提供的服务,计算成本,打通数据出入的通道。整个数据平台本身如果走这条路,可能就已经基本成型了。

走这条路的比较有名的应该是netflix。也有一个阶段,你发现云服务的费用太高,虽然省了你很多事,但是花钱嗖嗖的。

几个老板一合计,再玩下去下个月工资发布出来了。然后无奈之下公司开始往私有集群迁移。

这时候你大概需要一群靠谱的运维,帮你监管机器,之前两三台机器登录上去看看状态换个磁盘什么的也许就不可能了,你面对的是成百上千台主机,有些关键服务必须保证稳定,有些是数据节点,磁盘三天两头损耗,网络可能被压得不堪重负。你需要一个靠谱的人设计网络布局,设计运维规范,架设监控,值班团队走起7*24小时随时准备出台。

然后上面再有平台组真的大数据平台走起。然后是选型,如果有技术实力,可以直接用社区的一整套,自己管起来,监控部署什么的自己走起。

这个阶段部署监控和用户管理什么的都不可能像两三个节点那样人肉搞了,配置管理,部署管理都需要专门的平台和组件;定期Review用户的作业和使用情况,决定是否扩容,清理数据等等。否则等机器和业务进一步增加,团队可能会死的很惨,疲于奔命,每天事故不断,进入恶性循环。

当然有金钱实力的大户可以找Cloudera,Hortonworks,国内可以找华为星环,会省不少事,适合非互联网土豪。当然互联网公司也有用这些东西的,比如Ebay。

接下去你可能需要一些重量的组件帮你做一些事情。比如你的数据接入,之前可能找个定时脚本或者爬log发包找个服务器接收写入HDFS,现在可能不行了,这些大概没有高性能,没有异常保障,你需要更强壮的解决方案,比如Flume之类的。

你的业务不断壮大,老板需要看的报表越来越多,需要训练的数据也需要清洗,你就需要任务调度,比如oozie或者azkaban之类的,这些系统帮你管理关键任务的调度和监控。数据分析人员的数据大概可能渐渐从RDBMS搬迁到集群了,因为传统数据库已经完全hold不住了,但他们不会写代码,所以你上马了Hive。

然后很多用户用了Hive觉得太慢,你就又上马交互分析系统,比如Presto,Impala或者SparkSQL。你的数据科学家需要写ML代码,他们跟你说你需要Mahout或者Spark MLLib,于是你也部署了这些。

至此可能数据平台已经是工程师的日常工作场所了,大多数业务都会迁移过来。这时候你可能面临很多不同的问题。

比如各个业务线数据各种数据表多的一塌糊涂,不管是你还是写数据的人大概都不知道数据从哪儿来,接下去到哪儿去。你就自己搞了一套元数据管理的系统。

你分析性能,发现你们的数据都是上百Column,各种复杂的Query,裸存的Text格式即便压缩了也还是慢的要死,于是你主推用户都使用列存,Parquet,ORC之类的。又或者你发现你们的ETL很长,中间生成好多临时数据,于是你下狠心把pipeline改写成Spark了。

再接下来也许你会想到花时间去维护一个门户,把这些零散的组件都整合到一起,提供统一的用户体验,比如一键就能把数据从数据库chua一下拉到HDFS导入Hive,也能一键就chua一下再搞回去;点几下就能设定一个定时任务,每天跑了给老板自动推送报表;或者点一下就能起一个Storm的topology;或者界面上写几个Query就能查询Hbase的数据。这时候你的数据平台算是成型了。

当然,磕磕碰碰免不了。每天你都有新的问题和挑战,否则你就要失业了不是?你发现社区不断在解决你遇到过的问题,于是你们架构师每天分出很多时间去看社区的进展,有了什么新工具,有。

大数据平台搭建基础知识

相关推荐:
  • 2014初级药剂师真题(初级药师考试内容及其题型都有哪些)
  • 知识产权法律基础自测答案(求《法律基础》模拟题和答案)
  • 医学类考题及答案(医学试题库)
  • 公共分什么类别(公共都包括哪些)
  • 一级下册第八单元归类(人教版小学语文一年级下册第一~八单元教材分析及教学建议)
上一篇:最美伤感的情话句子2022(很伤感的情话句子带图) 下一篇:校园写人作文高中(求一篇写高中校园生活的作文800字)

相关推荐

2014初级药剂师真题(初级药师考试内容及其题型都有哪些)
知识产权法律基础自测答案(求《法律基础》模拟题和答案)
医学类考题及答案(医学试题库)
公共分什么类别(公共都包括哪些)
一级下册第八单元归类(人教版小学语文一年级下册第一~八单元教材分析及教学建议)
钢结构工程相关(钢结构有哪些点)
dhlfedex的(请问:DHL.EMS.UPS.TNT.FEDEX.各有什么不同及)
衡器考试题(求电子秤原理及)
招警公共考什么(公安系统公务员考试公共主要考哪些)
证券资格证金融(证券资格考试汇总是什么)
潮流时尚 写作素材 创新创业
生活常识 策划方案 安全知识
自考专业 家居生活 三农创业
励志故事 时尚穿搭 星座知识
热门分类

声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
 蜀ICP备2020033479号-4  Copyright © 2016  学习鸟. 页面生成时间:3.325秒

返回顶部