勾股定理的应用重点知识点
第一、①面积法证明勾股定理;
②在直角三角形中已知任意两边求第三边;
③斜边上高h与a、b、c关系;→an=ch
④用相似三角形可以纯数学证明勾股定理,并有知二求四。
第二、①勾股定理证明的特殊性;
②在直角三角形中已知一边,并且另外两边数量上存在关系,求另外的两条边;
③在直角三角形中已知一边,且有一个角为30°或45°求另外两边。
第三、直角三角形所有已的性质。
①角的性质:两锐角互余;
②边的性质:勾股定理;
③边与角的性质:
ⅰ.30°角所对的直角边等于斜边的一半;
ⅱ.含30°角的直角三角形三边之比为1:√3:2;
ⅲ.含45°角的直角三角形三边之比为1:1:√2.
第四、勾股定理在实际生活中的应用。
如求距离,如确定是否直角等。
必修作业模版内容 1.教学设计学科名称 2.所在班级情况,学生特点分析 3.教学内容分析 4.教学目标 5.教学难点分析 6.教学课时 7.教学过程 8.课堂练习 9.作业安排 10. 附录(教学资料及资源) 11. 自我问答 北师大版八年级数学(上册)教师用书 第一章 勾股定理 1.1 探索勾股定理 课前预习·教学有方 ◎点击关键词 勾股定理 平方 证明 计算 应用 ◎目标导航船 1.通过拼图活动和勾股定理的文化背景了解,让学生发现勾股定理. 2. 能利用材料,通过剪、拼图验证勾股定理. 3. 能运用勾股定理根据直角三角形的两条边求第三条边,并能解决简单的生活、生产实践中的问题. 3.重点:勾股定理的证明及应用。
4.难点:学生数学语言的运用。 ◎创意开场白 勾股定理是在前面学习了直角三角形一些性质的基础上学习的,它是几何的重要定理之一,它揭示了直角三角形三边的数量关系,它将形与数密切联系起来,在数学的发展中起着非常重要的作用,在现实世界中也有着广泛的应用.学生通过对勾股定理的学习,对直角三角形有进一步的认识和理解,为今后学习解直角三角形打下基础。
一、欣赏图片引人 2002年国际数学家大会把“赵爽弦图”确定为 本届大会的会徽。 你见过这个图案吗? 你听说过勾股定理吗? 引入新课 §18.1勾股定理 二、了解历史引人 商高是公元前十一世纪的中国人。
当时中国的朝代是西周,是奴隶社会时期。在中国古代大约是战国时期西汉的数学著作《周髀算经》中记录着商高同周公的一段对话。
商高说:"…故折矩,勾广三,股修四,经隅五。"什么是"勾、股"呢?在中国古代,人们把弯曲成直角的手臂的上半部分称为"勾",下半部分称为"股"。
商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成"勾三股四弦五"。
由于勾股定理的内容最早见于商高的话中,所以人们就把这个定理叫作"商高定理"。 三、从一个美丽的故事引人 世界的许多科学家正在试探着寻找“外星人”,人们为了取得与外星人的联系,想了很多方法。
早在1820年,德国著名数学家高斯曾提出,可在西伯利亚的森林里伐出一片直角三角形的空地,然后在这片空地里种上麦子,以三角形的三条边为边种上三片正方形的松树林,如果有外星人路过地球附近,看到这个巨大的数学图形,便会知道:这个星球上有智慧生命。 我国数学家华罗庚也曾提出:若要沟通两个不同星球的信息交往,最好利用太空飞船带上这个图形,并发射到太空中去。
四、从一个著名问题引人 《九章算术》有一勾股定理名题:“今有池方一丈,葭(jiā)生其中央.出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.” 本题的意思是:(如图1)有一水池一丈见方,池中生有一棵类似芦苇的植物,露出水面一尺,如把它引向岸边,正好与岸边齐。问水有多深,该植物有多长? 图1 教师通过将实际问题转化成直角三角形的三边关系问题,从而出示课题——勾股定理。
◎温故而知新 【温故】 1、三角形按照角的大小可以分为:锐角三角形、直角三角形、和钝角三角形。 2、三角形的三边关系:任意两边之和大于第三边。
【知新】 勾股定理: 1.直角三角形 两直角边的平方和 等于 斜边的平方 . 2.几何语言表述:如图1.1-1,在RtΔABC中, C= 90°。 则: BC 2+ AC 2= AB 2 若BC=a,AC=b,AB=c, 则上面的定理可以表示为: 图1.1-1 乐学好思1 到目前为止,学过的直角△ABC的主要性质是:(如图1.1-2)∠C=90°,(用几何语言表示) ⑴两锐角之间的关系: ; ⑵若D为斜边中点,则斜边中线等于斜边的一半; ⑶若∠B=30°,则∠B的对边和斜边: ; ⑷三边之间的关系: . A B C D 图1.1-2 我的疑问: 课堂研习·一点即通 ◎知识全突破 ●知识点1 探索勾股定理 导航指数■■■■□□ 1、请在坐标纸上画出一个直角三角形,使它 的两条直角边分别是3和4,分别以三边向外做正方形,如图1.1-3,计算 A的 面积 B的 面积 C的 面积 如图 16 9 25 A B C 图1.1-3 小组讨论,交流 SA+SB=SC 结论: 2、请你利用坐标纸,自己选取你喜欢的两个数作为直角边,探索上述关系是否依旧成立?(如图1.1-4) A B C 图1.1-4 结论:SA+SB=SC 即:两条直角边上的正方形面积之和等于斜边上的正方形的面积. 问题: 1、猜想是否所有的直角三角形的三边都具有 此性质?用直角边是a、b,斜边是c的四个全等直角三角形(图1.1-5)拼成(图1.1-6). 观察图形并思考、填空: 大正方形的面积可表示为:(a+b)2 这个大正方形的面积还可以怎么表示? ; 于是可列等式为 ; 将等式化简、整理,得 。
小结:勾股定理 图1.1-7 直角三角形的两直角边的平方和等于斜边的平方.如图1.1-7, 即:若△ABC中, ∠ACB=90° ,则 . 变形:若∠ACB=90°, 则a2= c2 -b2 b2 = c2 - a2 教师在此基础上介绍“勾,股,弦”的含义,进行点题,结合直角三角形,让学生从中体验勾股定理蕴含的深刻的数形结合思想。 ●知识点2 定理证明:你会证明勾股定理吗? 导航指数■■■■■ 勾股定理的证明方法有数百种之多,现列举两种典型证法。
请根据老师分组选取一种证法加以研究,并将结。
一、达纲要求:
1、理解余角的概念,掌握同角或等角相等,直角三角形两锐角互余等性质,会用它们进行有关论证和计算。
2、了解逆命题和逆命定理的概念,原命题成立它的逆命题不一定成立,会识别两个互逆命题。
3、掌握勾股定理,会用勾股定理由直角三角形两边长求第三边长;会用勾股定理的逆定理判定直角三角形。
4、初步掌握根据题设和有关定义、公理、定理进行推理论证。
5、通过介绍我国古代数学关于勾股定理的研究,对学生进行爱国主义教育。
二、重点提示
1、重点 勾股定理及其应用
2、难点 勾股定理及其逆定理的证明
3、关键点 灵活运用勾股定理及其逆定理进行证题和计算
三、方法技巧
1、勾股定理是直角三角形三边存在的一种特殊关系,它的证明方法很多,用面积法证明比较简捷,用面积法证题是一种重要的证题方法,涉及到距离或垂线段时运用面积法解题较方便。
2、勾股定理的应用非常广泛,在进行几何计算时,常常要用到代数知识的方法,有的几何题为了应用勾股定理,可以作高(或垂线段)构造直角三角形。
3、勾股定理的逆定理的证明方法比较特殊,这种证题思路和方法值得学习借鉴,勾股定理的逆定理是判定是否直角三角形的重要依据,它可以通过边的长度关系,确定角的大小,因而在应用时,有一定的技巧,解题的思路有时更为特殊。
在我国,把直角三角形的两直角边的平方和等于斜边的平方这一特性叫做勾股定理或勾股弦定理,又称毕达哥拉斯定理或毕氏定理(Pythagoras Theorem)。数学公式中常写作a^2+b^2=c^2
从很多泥板记载表明,巴比伦人是世界上最早发现“勾股定理”的,这里只举一例。
例如公元前1700年的一块泥板(编号为BM85196)上第九题,大意为“有一根长为5米的木梁(AB)竖直靠在墙上,上端(A)下滑一米至D。问下端(C)离墙根(B)多远?”他们解此题就是用了勾股定理,如图 设AB=CD=l=5米,BC=a,AD=h=1米,则BD=l-h=5-1米=4米 ∵a=√[l2-(l-h)2]=√[52-(5-1)2]=3米,∴三角形BDC正是以3、4、5为边的勾股三角形。
勾股定理又叫商高定理、毕氏定理,或称毕达哥拉斯定理(Pythagoras Theorem).在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。
如果直角三角形两直角边分别为a、b,斜边为c,那么a²+b²=c²据考证,人类对这条定理的认识,少说也超过 4000 年!中国最早的一部数学著作——《周髀算经》的开头,就有这条定理的相关内容:周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度。夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。
既方其外,半之一矩,环而共盘。得成三、四、五,两矩共长二十有五,是谓积矩。
故禹之所以治天下者,此数之所由生也。”从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。
在西方有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。
故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。
实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例。除上述两个例子外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角。
但是,这一传说引起过许多数学史家的怀疑。比如说,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理。
我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得证实。”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥板书,据专家们考证,其中一块上面刻有如下问题:“一根长度为 30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为为3:4:5三角形的特殊例子;专家们还发现,在另一块泥板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数。
这说明,勾股定理实际上早已进入了人类知识的宝库。勾股定理是几何学中的明珠,它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家、画家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。
也许是因为勾股定理既重要又简单又实用,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。
实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。
(※关于勾股定理的详细证明,由于证明过程较为繁杂,不予收录。) 人们对勾股定理感兴趣的原因还在于它可以作推广。
欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。 从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。
勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。 若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。
如此等等。 【附录】 一、【《《周髀算经》·》简介】 《周髀算经》算经十书之一。
约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。
《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。
《周髀算经》使用了相当繁复的分数算法和开平方法。 二、【伽菲尔德证明勾股定理的故事】 1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。
他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。
只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”
小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地。
勾股定理的证明勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若鹜,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。
也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。
实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。
在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。
1.中国方法 画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。
左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。
左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。
于是 a2+b2=c2。 这就是我们几何教科书中所介绍的方法。
既直观又简单,任何人都看得懂。 2.希腊方法 直接在直角三角形三边上画正方形,如图。
容易看出, △ABA' ≌△AA'' C。 过C向A''B''引垂线,交AB于C',交A''B''于C''。
△ABA'与正方形ACDA'同底等高,前者面积为后者面积的一半,△AA''C与矩形AA''C''C'同底等高,前者的面积也是后者的一半。由△ABA'≌△AA''C,知正方形ACDA'的面积等于矩形AA''C''C'的面积。
同理可得正方形BB'EC的面积等于矩形B''BC'C''的面积。 于是, S正方形AA''B''B=S正方形ACDA'+S正方形BB'EC, 即 a2+b2=c2。
至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。
这就是希腊古代数学家欧几里得在其《几何原本》中的证法。 以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念: ⑴ 全等形的面积相等; ⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。
这是完全可以接受的朴素观念,任何人都能理解。 我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。
采用的是割补法: 如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。
赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。 西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。
据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。
遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。 下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。
如图, S梯形ABCD= (a+b)2 = (a2+2ab+b2), ① 又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。 ② 比较以上二式,便得 a2+b2=c2。
这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。 1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。
5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。
在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。 如图,Rt△ABC中,∠ACB=90°。
作CD⊥BC,垂足为D。则 △BCD∽△BAC,△CAD∽△BAC。
由△BCD∽△BAC可得BC2=BD ? BA, ① 由△CAD∽△BAC可得AC2=AD ? AB。 ② 我们发现,把①、②两式相加可得 BC2+AC2=AB(AD+BD), 而AD+BD=AB, 因此有 BC2+AC2=AB2,这就是 a2+b2=c2。
这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。
在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法: 设△ABC中,∠C=90°,由余弦定理 c2=a2+b2-2abcosC, 因为∠C=90°,所以cosC=0。
所以 a2+b2=c2。 这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。
原因是余弦定理的证明来自勾股定理。 人们对勾股定理感兴趣的原因还在于它可以作推广。
欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.156秒