一、填空题(每小题5分,共50分)1.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B,则集合CU(A∩B)中的元素共有(A)(A)3个 (B)4个 (C)5个 (D)6个 2.已知 是实数,则“ 且 ”是“ 且 ”的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 3.已知 是实数,则“ 且 ”是“ 且 ”的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 4.设集合 ,则 ( ) A. B. C. D. 5.集合 , ,若 ,则 的值为( )A.0 B.1 C.2 D.46.若集合 则A∩B是 (A) (B) (C) (D) 7.若集合 是 A.{1,2,3} B. {1,2} C. {4,5} D. {1,2,3,4,5}8.已知全集 中有m个元素, 中有n个元素.若 非空,则 的元素个数为A. B. C. D. 9.已知 是两个向量集合,则 A.{〔1,1〕} B. {〔-1,1〕} C. {〔1,0〕} D. {〔0,1〕}10.下列4个命题 ㏒1/2x>㏒1/3x ㏒1/2x ㏒1/3x其中的真命题是(A) ( B) (C) (D) 二、填空题(每小题5分,共25分)11.若 是小于9的正整数 , 是奇数 , 是3的倍数 ,则 .12.设A是整数集的一个非空子集,对于 ,如果 且 ,那么 是A的一个“孤立元”,给定 ,由S的3个元素构成的所有集合中,不含“孤立元”的集合共有 个.13.设全集 ,若 ,则集合B=__________.14.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有 人。
15.某班共30人,其中15人喜爱篮球运动,10人喜爱兵乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为_12__三、解答题16. (本小题共12分)已知 ,设P:函数 在R上单调递减,Q:不等式 的解集为R如果P和Q有且仅有一个正确,求 的取值范围17. (本小题共13分)记关于 的不等式 的解集为 ,不等式 的解集为 .(I)若 ,求 ;(II)若 ,求正数 的取值范围.参考答案一、选择题1.答案:A【解析】 , 故选A。也可用摩根律: 2.答案:C 【解析】对于“ 且 ”可以推出“ 且 ”,反之也是成立的3.答案:C 【解析】对于“ 且 ”可以推出“ 且 ”,反之也是成立的4.【答案】A【解析】本题主要考查集合的基本运算以及简单的不等式的解法. 属于基础知识、基本运算的考查.∵ ,∴ ,故选A.5.答案:D【解析】:∵ , , ∴ ∴ ,故选D.【命题立意】:本题考查了集合的并集运算,并用观察法得到相对应的元素,从而求得答案,本题属于容易题.6.答案:D【解析】集合 ,∴ 7.答案:B【解析】解不等式得 ∵ ∴ ,选B。
8.答案:D【解析】因为 ,所以 共有 个元素,故选D9.答案:A【解析】因为 代入选项可得 故选A.10.答案:D【解析】取x= ,则㏒1/2x=1,㏒1/3x=log32 当x∈(0, )时,( )x1.p4正确二、填空题1.答案 解法1 ,则 所以 ,所以 【解析】2 ,而 2.答案:6【解析】本题主要考查阅读与理解、信息迁移以及学生的学习潜力,考查学生分析问题和解决问题的能力. 属于创新题型. 什么是“孤立元”?依题意可知,必须是没有与 相邻的元素,因而无“孤立元”是指在集合中有与 相邻的元素.故所求的集合可分为如下两类:因此,符合题意的集合是: 共6个. 故应填6.3.答案:{2,4,6,8}【解析】 考点定位本试题主要考查了集合的概念和基本的运算能力。 4.答案:8. 【解析】由条件知,每名同学至多参加两个小组,故不可能出现一名同学同时参加数学、物理、化学课外探究小组, 设参加数学、物理、化学小组的人数构成的集合分别为 ,则 . ,由公式 易知36=26+15+13-6-4- 故 =8 即同时参加数学和化学小组的有8人.5.答案:12【解析】设两者都喜欢的人数为 人,则只喜爱篮球的有 人,只喜爱乒乓球的有 人,由此可得 ,解得 ,所以 ,即所求人数为12人。
三、解答题16.(本小题12分)解析:解析:函数 在R上单调递减 不等式 17. 解析:(I)由 ,得 .(II) .由 ,即a的取值范围是 .。
不好意思我不知道是必修几了不过这是必修一到必修五的望采纳~一、集合与简易逻辑:一、理解集合中的有关概念(1)集合中元素的特征:确定性,互异性,无序性。
(2)集合与元素的关系用符号=表示。(3)常用数集的符号表示:自然数集;正整数集;整数集;有理数集、实数集。
(4)集合的表示法:列举法,描述法,韦恩图。(5)空集是指不含任何元素的集合。
空集是任何集合的子集,是任何非空集合的真子集。二、函数一、映射与函数:(1)映射的概念:(2)一一映射:(3)函数的概念:二、函数的三要素:相同函数的判断方法:①对应法则;②定义域(两点必须同时具备)(1)函数解析式的求法:①定义法(拼凑):②换元法:③待定系数法:④赋值法:(2)函数定义域的求法:①含参问题的定义域要分类讨论;②对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。
(3)函数值域的求法:①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式;②逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解,型如:;④换元法:通过变量代换转化为能求值域的函数,化归思想;⑤三角有。不好意思我不知道是必修几了不过这是必修一到必修五的望采纳~一、集合与简易逻辑:一、理解集合中的有关概念(1)集合中元素的特征:确定性,互异性,无序性。
(2)集合与元素的关系用符号=表示。(3)常用数集的符号表示:自然数集;正整数集;整数集;有理数集、实数集。
(4)集合的表示法:列举法,描述法,韦恩图。(5)空集是指不含任何元素的集合。
空集是任何集合的子集,是任何非空集合的真子集。二、函数一、映射与函数:(1)映射的概念:(2)一一映射:(3)函数的概念:二、函数的三要素:相同函数的判断方法:①对应法则;②定义域(两点必须同时具备)(1)函数解析式的求法:①定义法(拼凑):②换元法:③待定系数法:④赋值法:(2)函数定义域的求法:①含参问题的定义域要分类讨论;②对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。
(3)函数值域的求法:①配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:的形式;②逆求法(反求法):通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围;常用来解,型如:;④换元法:通过变量代换转化为能求值域的函数,化归思想;⑤三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;⑥基本不等式法:转化成型如:,利用平均值不等式公式来求值域;⑦单调性法:函数为单调函数,可根据函数的单调性求值域。⑧数形结合:根据函数的几何图形,利用数型结合的方法来求值域。
三、函数的性质:函数的单调性、奇偶性、周期性单调性:定义:注意定义是相对与某个具体的区间而言。判定方法有:定义法(作差比较和作商比较)导数法(适用于多项式函数)复合函数法和图像法。
应用:比较大小,证明不等式,解不等式。奇偶性:定义:注意区间是否关于原点对称,比较f(x)与f(-x)的关系。
f(x)-f(-x)=0f(x)=f(-x)f(x)为偶函数;f(x)+f(-x)=0f(x)=-f(-x)f(x)为奇函数。判别方法:定义法,图像法,复合函数法应用:把函数值进行转化求解。
周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)=f(x),则T为函数f(x)的周期。其他:若函数f(x)对定义域内的任意x满足:f(x+a)=f(x-a),则2a为函数f(x)的周期.应用:求函数值和某个区间上的函数解析式。
四、图形变换:函数图像变换:(重点)要求掌握常见基本函数的图像,掌握函数图像变换的一般规律。常见图像变化规律:(注意平移变化能够用向量的语言解释,和按向量平移联系起来思考)平移变换y=f(x)→y=f(x+a),y=f(x)+b注意:(ⅰ)有系数,要先提取系数。
如:把函数y=f(2x)经过平移得到函数y=f(2x+4)的图象。(ⅱ)会结合向量的平移,理解按照向量(m,n)平移的意义。
对称变换y=f(x)→y=f(-x),关于y轴对称y=f(x)→y=-f(x),关于x轴对称y=f(x)→y=f|x|,把x轴上方的图象保留,x轴下方的图象关于x轴对称y=f(x)→y=|f(x)|把y轴右边的图象保留,然后将y轴右边部分关于y轴对称。(注意:它是一个偶函数)伸缩变换:y=f(x)→y=f(ωx),y=f(x)→y=Af(ωx+φ)具体参照三角函数的图象变换。
一个重要结论:若f(a-x)=f(a+x),则函数y=f(x)的图像关于直线x=a对称;五、反函数:(1)定义:(2)函数存在反函数的条件:(3)互为反函数的定义域与值域的关系:(4)求反函数的步骤:①将看成关于的方程,解出,若有两解,要注意解的选择;②将互换,得;③写出反函数的定义域(即的值域)。(5)互为反函数的图象间的关系:(6)原函数与反函数具有相同的单调性;(7)原函数为奇函数,则其反函数仍为奇函数;原函数为偶函数,它一定不存在反函数。
七、常用的初等函数:(1)一元一次函数:(2)一元二次函数:一般式两点式顶点式二次函数求最值问题:首先要采用配方法,化为一般式,有三个类型题型:(1)顶点固定,区间也固定。如:(2)顶。
(一)、映射、函数、反函数 1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射. 2、对于函数的概念,应注意如下几点: (1)掌握构成函数的三要素,会判断两个函数是否为同一函数. (2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式. (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数. 3、求函数y=f(x)的反函数的一般步骤:(1)确定原函数的值域,也就是反函数的定义域;(2)由y=f(x)的解析式求出x=f-1(y);(3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域.注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起. ②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算.(二)、函数的解析式与定义域 1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如: ①分式的分母不得为零; ②偶次方根的被开方数不小于零; ③对数函数的真数必须大于零; ④指数函数和对数函数的底数必须大于零且不等于1; ⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等.应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可. 已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域. 2、求函数的解析式一般有四种情况 (1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式. (2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可. (3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域. (4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(-x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式.(三)、函数的值域与最值1、函数的值域取决于定义域和对应法则,不论采用何种方法求函数值域都应先考虑其定义域,求函数值域常用方法如下:(1)直接法:亦称观察法,对于结构较为简单的函数,可由函数的解析式应用不等式的性质,直接观察得出函数的值域.(2)换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数解析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.(3)反函数法:利用函数f(x)与其反函数f-1(x)的定义域和值域间的关系,通过求反函数的定义域而得到原函数的值域,形如(a≠0)的函数值域可采用此法求得.(4)配方法:对于二次函数或二次函数有关的函数的值域问题可考虑用配方法.(5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等技巧.(6)判别式法:把y=f(x)变形为关于x的一元二次方程,利用“△≥0”求值域.其题型特征是解析式中含有根式或分式.(7)利用函数的单调性求值域:当能确定函数在其定义域上(或某个定义域的子集上)的单调性,可采用单调性法求出函数的值域.(8)数形结合法求函数的值域:利用函数所表示的几何意义,借助于几何方法或图象,求出函数的值域,即以数形结合求函数的值域.2、求函数的最值与值域的区别和联系 求函数最值的常用方法和求函数值域的方法基本上是相同的,事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同,因而答题的方式就有所相异. 如函数的值域是(0,16],最大值是16,无最小值.再如函数的值域是(-∞,-2]∪[2,+∞),但此函数无最大值和最小值,只有在改变函数定义域后,如x>0时,函数的最小值为2.可见定义域对函数的值域或最值的影响.3、函数的最值在实际问题中的应用 函数的最值的应用主要体现在用函数知识求解实际问题上,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多现实问题上,求解时要特别关注实际意义对自变量的制约,以便能正确求得最值.(四)、函数的奇偶性1、函数的奇偶性的定义:对于函数f(x),如果对于函数定义域内的任意一个x,。
直线与平面(一)•练习题 一、选择题(1)空间三条直线,两两相交,则由它们可确定平面的个数为 [ ] A.1 B.3 C.1或3 D.1或4(2)异面直线a,b分别在两个平面α,β内,若α∩β=直线c,则c [ ] A.与a,b均相交 B.至多与a,b之一相交 C.至少与a,b之一相交 D.与a,b均不相交(3)给出下列四个命题 ③若a‖b,a‖α,则b‖α ④若a‖α,b‖α,则a‖b(a,b,l为直线,α为平面) 其中错误命题的个数为 [ ] A.1 B.2 C.3 D.4(4)给出下面三个命题 甲:相交两直线l,m都在α内,且都不在β内 乙:l,m中至少有一条与β相交 丙:α与β相交 当甲成立时 [ ] A.乙是丙的充分而不必要条件 B.乙是丙的必要而不充分条件 C.乙是丙的充要条件 D.乙是丙的非充分也非必要条件(5)已知直线a,b,c和平面α,β,若a⊥α则 [ ](6)两条异面直线在一个平面内的射影一定是 [ ] A.两条相交直线 B.两条平行直线 C.一条直线和直线外一点 D.上述三种可能均有(7)在一个锐角二面角的一个面内有一条直线a,则在另一个面内与a垂直的直线 [ ] A.只有一条 B.有无穷多条 C.有一条或无穷多条 D.无法肯定(8)在空间,下列命题成立的是 [ ] A.过平面α外的两点,有且只有一个平面与平面α垂直 B.若直线l与平面α内的无数条直线垂直,则l⊥α C.互相平行的两条直线在一个平面内的射影必为互相平行的两条直线 D.若点P到三角形的三边的距离相等,且P在该三角形所在平面内的射影O在三角形内,则O为三角形的内心 二、填空题(9)线段AB=5cm,A,B到平面α的距离分别为1cm和1.5cm,则直线AB与平面α所成的角的大小是______.(10)已知平面α‖平面β,若夹在α,β间的一条垂线段AB=4,一条斜线段CD=6,若AC=BD=3,AB,CD的中点分别为M,N,则MN=______.(其中A,C∈α;B,D∈β)(11)正方体ABCD—A1B1C1D1中,若M,N分别为A1A和B1B的中点,设异面直线CM和D1N所成的角为θ,则cosθ的值为______.(12)过空间一点P的三条射线PA,PB,PC两两的夹角都是60°,则射线PC与平面APB所成角的正切函数值为______. 三、解答题(13)求证:空间两两相交且不共点的四条直线必共面.(14)如图21—1所示,E,F,G,H,M,N分别为空间四边形的边AB,BC,CD,DA及对角线AC和BD的中点,若AB=BC=CD=AD,求证:(Ⅰ)AC⊥BD;(Ⅱ)面BMN⊥面EFGH.(15)如图21—2所示,ABCD为菱形,且∠ABC=60°,PD⊥面ABCD,且PD=a,E为PB的中点.(Ⅰ)求证面AEC⊥面ABCD;(Ⅱ)求E到面PAD的距离;(Ⅲ)求二面角B—AE—C的正切函数值. 答案与提示 一、(1)C (2)C (3)D (4)C (5)C (6)D (7)B (8)D 提示(3)四个命题均不正确. ①l可能与α相交;②l可能与α相交,但其交点不在a,b上;③b可能在α内;④a,b可能相交或异面.(4)当乙成立时,α必与β相交;反之当丙成立时,l,m至少有一条与β相交,否则l//m与甲矛盾.(7)在另一平面内与a在其内的射影垂直的直线也必与a垂直,故有无穷多条.(8)(A)当过两点的直线⊥α时,则过该直线的所有平面都⊥α;(B)当l为α的斜线时,在α内与l的射影垂直的直线也必垂直于l;(C)可能为一条直线,两相交直线,两平行线或一直线及线外一点;(D)正确. 三、(13)如图答21-1,已知a,b,c,d四直线两两相交,但不共点.设a∩b=A,则过a,b可确定平面α,不妨设c∩a=C,c∩ c,d两两相交而不共点,并不排斥a,b,c共点而与d不共点.但c,d中总有一条与a,b不共点)(14)(Ⅰ) ∵AB=AD, BN=ND, ∴AN⊥BD(Ⅱ)由(Ⅰ)BD⊥MN.又 EH//BD,∴BD⊥EH 同理MN⊥EF ∴MN⊥面EFGH(15)(Ⅰ)如图答21-2,连AC,BD交于0,∵E为PA中点,O为AC中点,∴EO//PC,又∵PC⊥面ABCD ∴面BED⊥面ABCD(Ⅱ)∵EO//PC,∴EO//面PBC ∴E到面PBC的距离就是O到面PBC的距离. 又∵PC⊥面ABCD,∴面PBC⊥面ABCD 过O作OH⊥BC于H,则OH⊥面PBC(Ⅲ)∵面BDE⊥面ABCD,AO⊥BD,∴AO⊥面BDE 过A作AF⊥BE于F,则OF⊥BE 则∠AFO为二面角A-BE-D的平面角。
同学,还有一个月怕什么,重要是现在你知道重要性了。
首先你得对数学不要惧怕,最好养成一种兴趣,我也知道这不是一朝一夕的事,你得有信心。
其次,你得把高一的数学书拿出来,把目录翻出来,找找哪些是重点,是必须掌握的,就把书本上的定义读懂,再就把你没做的资料中的例题看几题典型的,再做做些习题,达到能懂、熟练的程度,也不用往死,毕竟这些只是打基础,知识再往后会慢慢加深的,以后好好听课就是了。
最后,持之以恒很重要。自学需要的是很好的自觉能力和抗诱惑能力。
相信自己,只是高一没学嘛,还有高二高三不是吗?高三还要训练很多,从头再复习的,路是自己走出来的,加油哦!
数列要找出等比等差的一些重要规律。以及求和的一些列方法一定要熟练(这在资料上都找的到)
上册中分析函数的单调性也很重要,尤其是奇偶性的判断,还有周期性等等。
下册中三角函数非常简单,但也需要对方法掌握熟练,(正弦余弦定理、还有各种诱导公式、)图像和性质等等也要学会判断和看出。再就是应用,这就靠练习了。 向量在以后主要用于选择题和填空题。不过,最终大多会用于立体几何,因为还会学空间几何的,不用怕,一步一步来,很简单的。不懂要问哦,为了你我可是把书都翻出来了,多给分哦。(我是今年高考的哦)
第一部分 集合1.理解集合中元素的意义是解决集合问题的关键:元素是函数关系中自变量的取值?还是因变量的取值?还是曲线上的点?… ;2.数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决; 是任何集合的子集,是任何非空集合的真子集。
3.重视元素的特征、集合运算(交、并、补)的有关性质和韦恩图的应用4.(1)含n个元素的集合的子集数为2n,真子集数为2n-1;非空真子集的数为2n-2;(2) 注意:讨论的时候不要遗忘了 的情况;(3) 。第二部分 函数1.映射:注意 ①第一个集合中的元素必须有象;②一对一,或多对一。
2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;⑤换元法 ;⑥利用均值不等式 ; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性( 、、等);⑨导数法3.复合函数的有关问题(1)复合函数定义域求法:① 若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。(2)复合函数单调性的判定:①首先将原函数 分解为基本函数:内函数 与外函数 ;②分别研究内、外函数在各自定义域内的单调性;③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。
注意:外函数 的定义域是内函数 的值域。4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
5.函数的奇偶性⑴函数的定义域关于原点对称是函数具有奇偶性的先决条件;⑵ 是奇函数 ;⑶ 是偶函数 ;⑷奇函数 在原点有定义,则 ;⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;6.函数的单调性⑴单调性的定义: 在区间 上是增(减)函数 当 时 ;⑵单调性的判定定义法:注意:①作差法,一般要将式子 化为几个因式作积或作商的形式,以利于判断符号;②复合函数法(见二3 (2));③图像法。7.函数的周期性(1)周期性的定义:对定义域内的任意 ,若有 (其中 为非零常数),则称函数 为周期函数, 为它的一个周期。
所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周期。
(2)三角函数的周期① ;② ;③ ;④ ;⑤ ;⑶函数周期的判定:①定义法(试值) ②图像法 ③公式法(利用(2)中结论)⑷与周期有关的结论:① 或 的周期为 ;② 的图象关于点 中心对称 周期2 ;③ 的图象关于直线 轴对称 周期为2 ;④ 的图象关于点 中心对称,直线 轴对称 周期4 ;8.基本初等函数的图像与性质1.指数与对数运算(1)根式的概念:②性质:1) ;2)当 为奇数时, ;3)当 为偶数时, 。(2).幂的有关概念①规定:1) N*;2) ; n个3) Q,4) 、N* 且 。
②性质:1) 、Q); 2) 、Q);3) Q)。(注)上述性质对r、R均适用。
(3).对数的概念①定义:如果 的b次幂等于N,就是 ,那么数 称以 为底N的对数,记作 其中 称对数的底,N称真数。1)以10为底的对数称常用对数, 记作 ;2)以无理数 为底的对数称自然对数, ,记作 ;②基本性质:1)真数N为正数(负数和零无对数);2) ;3) ;4)对数恒等式: 。
③运算性质:如果 则1) ;2) ;3) R)。④换底公式: 1) ;2) 。
2.指数函数与对数函数(1)指数函数:①定义:函数 称指数函数,1)函数的定义域为R;2)函数的值域为 ;3)当 时函数为减函数,当 时函数为增函数。②函数图像:1)指数函数的图象都经过点(0,1),且图象都在第一、二象限;2)指数函数都以 轴为渐近线(当 时,图象向左无限接近 轴,当 时,图象向右无限接近 轴);3)对于相同的 ,函数 的图象关于 轴对称。
③函数值的变化特征:(2)对数函数:①定义:函数 称对数函数,1)函数的定义域为 ;2)函数的值域为R;3)当 时函数为减函数,当 时函数为增函数;4)对数函数 与指数函数 互为反函数。②函数图像:1)对数函数的图象都经过点(0,1),且图象都在第一、四象限;2)对数函数都以 轴为渐近线(当 时,图象向上无限接近 轴;当 时,图象向下无限接近 轴);4)对于相同的 ,函数 的图象关于 轴对称。
③函数值的变化特征:⑴幂函数: ( 注意 五种情况在第一象限的图象9.二次函数:⑴解析式:①一般式: ;②顶点式: , 为顶点;③零点式: 。⑵二次函数问题解决需考虑的因素:①开口方向;②对称轴;③端点值;④与坐标轴交点;⑤判别式;⑥两根符号。
⑶二次函数问题解决方法:①数形结合;②分类讨论。10.函数图象⑴图象作法 :①描点法(注意三角函数的五点作图)②图象变换法③导数法⑵图象变换:平移变换:ⅰ , ———左“+”右“-”; ⅱ ———上“+”下“-”;伸缩变换:ⅰ , ( ———纵坐标不变,横坐标伸长为原来的 倍;ⅱ , ( ———横坐标不变,纵坐标伸长为原来的 倍;对称变换:ⅰ ;ⅱ ;ⅲ ; ⅳ ;翻转变换:ⅰ ———右不动,右向左翻( 在 左侧图象去掉);ⅱ ———上不动,下向上翻(| |在 下面无图象);11.函数零点的求法:⑴。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.641秒