激光是20世纪以来,继原子能、计算机、半导体之后,人类的又一重大发明,被称为“最快的刀”、“最准的尺”、“最亮的光”和“奇异的激光”。
它的亮度为太阳光的100亿倍。它的原理早在 1916 年已被著名的物理学家爱因斯坦发现,但要直到 1958 年激光才被首次成功制造。
激光是在有理论准备和生产实践迫切需要的背景下应运而生的,它一问世,就获得了异乎寻常的飞快发展,激光的发展不仅使古老的光学科学和光学技术获得了新生,而且导致整个一门新兴产业的出现。激光可使人们有效地利用前所未有的先进方法和手段,去获得空前的效益和成果,从而促进了生产力的发展。
该项目在华中科技大学武汉光电国家实验室和武汉东湖中国光谷得到充分体现。 【激光产生】 一.物质与光相互作用的规律 光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子,同时改变自身运动状况的表现。
微观粒子都具有特定的一套能级(通常这些能级是分立的)。任一时刻粒子只能处在与某一能级相对应的 状态(或者简单地表述为处在某一个能级上)。
与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为=△E/h(h为普朗克常量)。
1. 受激吸收(简称吸收) 处于较低能级的粒子在受到外界的激发(即与其他的粒子发生了有能量交换的相互作用,如与光子发生非弹性碰撞),吸收了能量时,跃迁到与此能量相对应的较高能级。这种跃迁称为受激吸收。
2. 自发辐射 粒子受到激发而进入的高能态,不是粒子的稳定状态,如存在着可以接纳粒子的较低能级,既使没有外界作用,粒子也有一定的概率,自发地从高能级(E2)向低能级(E1)跃迁,同时辐射出能量为(E2-E1)的光子,光子频率 =(E2-E1)/h。这种辐射过程称为自发辐射。
众多原子以自发辐射发出的光,不具有相位、偏振态、传播方向上的一致,是物理上所说的非相干光。 3. 受激辐射、激光 1917年爱因斯坦从理论上指出:除自发辐射外,处于高能级E2上的粒子还可以另一方式跃迁到较低能级。
他指出当频率为=(E2-E1)/h的光子入射时,也会引发粒子以一定的概率,迅速地从能级E2跃迁到能级E1,同时辐射一个与外来光子频率、相位、偏振态以及传播方向都相同的光子,这个过程称为受激辐射。 可以设想,如果大量原子处在高能级E2上,当有一个频率 =(E2-E1)/h的光子入射,从而激励E2上的原子产生受激辐射,得到两个特征完全相同的光子,这两个光子再激励E2能级上原子,又使其产生受激辐射,可得到四个特征相同的光子,这意味着原来的光信号被放大了。
这种在受激辐射过程中产生并被放大的光就是激光。 二.粒子数反转 爱因斯坦1917提出受激辐射,激光器却在1960年问世,相隔43年,为什么?主要原因是,普通光源中粒子产生受激辐射的概率极小。
当频率一定的光射入工作物质时,受激辐射和受激吸收两过程同时存在,受激辐射使光子数增加,受激吸收却使光子数减小。物质处于热平衡态时,粒子在各能级上的分布,遵循平衡态下粒子的统计分布律。
按统计分布规律,处在较低能级E1的粒子数必大于处在较高能级E2的粒子数。这样光穿过工作物质时,光的能量只会减弱不会加强。
要想使受激辐射占优势,必须使处在高能级E2的粒子数大于处在低能级E1的粒子数。这种分布正好与平衡态时的粒子分布相反,称为粒子数反转分布,简称粒子数反转。
如何从技术上实现粒子数反转是产生激光的必要条件。 理论研究表明,任何工作物质,在适当的激励条件下,可在粒子体系的特定高低能级间实现粒子数反转。
若原子或分子等微观粒子具有高能级E2和低能级E1,E2和E1能级上的布居数密度为N2和N1,在两能级间存在着自发发射跃迁、受激发射跃迁和受激吸收跃迁等三种过程。受激发射跃迁所产生的受激发射光,与入射光具有相同的频率、相位、传播方向和偏振方向。
因此,大量粒子在同一相干辐射场激发下产生的受激发射光是相干的。受激发射跃迁几率和受激吸收跃迁几率均正比于入射辐射场的单色能量密度。
当两个能级的统计权重相等时,两种过程的几率相等。在热平衡情况下N2N1,这种状态称为粒子数反转状态。
在这种情况下,受激发射跃迁占优势。光通过一段长为l的处于粒子数反转状态的激光工作物质(激活物质)后,光强增大eGl倍。
G为正比于(N2-N1)的系数,称为增益系数,其大小还与激光工作物质的性质和光波频率有关。一段激活物质就是一个激光放大器。
如果,把一段激活物质放在两个互相平行的反射镜(其中至少有一个是部分透射的)构成的光学谐振腔中(图1),处于高能级的粒子会产生各种方向的自发发射。其中,非轴向传播的光波很快逸出谐振腔外:轴向传播的光波却能在腔内往返传播,当它在激光物质中传播时,光强不断增长。
如果谐振腔内单程小信号增益G0l大于单程损耗δ(G0l是小信号增益系数),则可产生自激振荡。原子的运动状态可以分为不同的能级,当原子从高能级向低能级跃迁时,会释放出相应能量的光子(所谓自发辐射)。
同样的,当一个光。
刚好我正在学习一门关于激光的课程,先简单凭印象给你讲解下,如果有更详细的需要,你可以发邮件给我。
如果一个系统中处于高能态的粒子数多于低能态的粒子数,就出现了粒子数的反转状态。那么只要有一个光子引发,就会迫使一个处于高能态的原子受激辐射出一个与之相同的光子,这两个光子又会引发其他原子受激辐射,这样就实现了光的放大,也就是激光。
激光的发散角很小,适于远距离传播。
当采取光学处理,可以将激光光束聚焦, 因而可以产生很强的能量,可用于工业加工。工业上常用的激光器有:二氧化碳激光器,能产生10kw以上的功率,ND:YAG激光器能产生约5kw的功率,半导体激光器,其激光束可以叠加能以较小的体积得到很强的功率,广泛用于各个领域。还有非常重要的excimer准分子激光器,能用于切割加工几乎所有的材料,但是工业上难以得到较强功率,相比前三种,用途虽多,但是应用没有他们广泛。值得一提的是,现在流行的激光近视眼矫正以及激光美容都是采用准分子激光器。
按照功率由低到高,激光的应用有从超市的商品条码扫描器,教学用的激光笔,光驱里用到的激光指示器,工业上用于加工,最厉害的数激光武器了。
激光的能量主要取决于它的波长,波长越短,能量越高。
使用或接触激光要注意安全。激光对人体造成的危害主要是皮肤,眼睛。特别是眼睛,千万不可直视激光,要知道眼睛里面的晶状体可以将激光的能量放大十万倍!!!(因为晶状体可以将激光光斑缩小三个数量级,对应能量扩大六个数量级!)瞬间强大的能量会将你的视网膜烧毁甚至会灼伤更内部的“部件”。因此,严重警告!!!!!:眼睛不可直视激光。
“激光切割”技术需要学习激光原理,材料,热加工方面的知识。
一、“激光切割”是用聚焦镜将CO2激光束聚焦在材料表面使材料熔化,同时用与激光束同轴的压缩气体吹走被熔化的材料,并使激光束与材料沿一定轨迹作相对运动,从而形成一定形状的切缝。
二、“激光切割”技术广泛应用于金属和非金属材料的加工中,可大大减少加工时间,降低加工成本,提高工件质量。
三、“脉冲激光”适用于金属材料,连续激光适用于非金属材料,后者是激光切割技术的重要应用领域。现代的激光成了人们所幻想追求的"削铁如泥"的"宝剑"。
不难学,但是也要看怎么学,如果是有一定的英语数控基础或者机械制图基础的,会比较容易上手点。
只是学开机的话,记得几个常用键就基本上能操作了。一般常用的就是开机,暂停,程序启动,程序选择,参数调节,速度调节,气压调节,功率调节,及床台交换等。
其次就是要学会看切割品质,是否有烧边,烧角,切割毛刺的形状,方向等。如果了解了这些,基本的设备操作是没问题了
如果想更深层次,就是排版和编程了,这个就要考虑工件编排的合理性,切割引线和路径选择的合理性,切割间隙引起的热变形量等等,这个就要有一定的基础了
应该不是需要太多的基础,可以直接看,最好去听一听课。
光学一般就考波动光学吧,如果普通物理里面机械波学的好的话就没什么大问题,主要就是各种干涉和衍射(等倾干涉、等厚干涉、菲涅尔衍射、弗朗禾费衍射、光栅衍射的各种条纹特点),另外还有偏振,就这么多。
激光原理的话需要一点量子论的基础知识(也就只有E=hv,p=hλ这两个关系),学激光原理主要抓住增益和损耗两个方面,主要涉及激光器的结构、自再现模高斯光束的性质公式、增益阈值、速率方程等等的基础知识。
另外如果是自动化专业的话傅里叶变换应该不成问题吧,激光原理可能要用到一点点。
激光的原理,简而言之就是光的受激辐射放大,负责一点说就是被泵浦光激发的原子在种子光源的激发下同步跃迁以达到对种子光复杂放大的过程,再负责一点说,激光原理在大学里面是整整一本书,是整整一门课,是要用一个学期学完的,推荐你看《激光原理》,里面详细解释激光的成因,激光的增益,损耗,横模,纵模,模式竞争,激光器的分类,谐振器,激光器传播矩阵,激光器输出,激光器光束形状等等很多很多知识!
医学上激光治病现在用的比较多的就是切割,用高能激光从身体上切掉某个东西,使得创伤面小,速度快,效果好。还有一些比较高深的,比如激光光镊等等,但是激光不是什么病都能治的!
在没有损耗的情况下,不仅仅激光,任何光都可以无限远传播,当然激光的准直性好,能量高,使得他在长距离并且考虑损耗的传播的情况下,比普通光源更有优势!有的高能激光传个几千公里没问题,如果再在低损耗的光纤中传播,距离将会更远!
激光能杀人么?笑话,美国人用激光炮把自己的卫星都打下来了,你说能杀人不?我们实验室平常用的高能激光,照射身体1,2秒就感觉发烫,超高能激光还要穿放辐射服,那种激光基本上就是打你眼睛一下,你这辈子就崩看东西了!
应该不是需要太多的基础,可以直接看,最好去听一听课。
光学一般就考波动光学吧,如果普通物理里面机械波学的好的话就没什么大问题,主要就是各种干涉和衍射(等倾干涉、等厚干涉、菲涅尔衍射、弗朗禾费衍射、光栅衍射的各种条纹特点),另外还有偏振,就这么多。激光原理的话需要一点量子论的基础知识(也就只有E=hv,p=hλ这两个关系),学激光原理主要抓住增益和损耗两个方面,主要涉及激光器的结构、自再现模高斯光束的性质公式、增益阈值、速率方程等等的基础知识。
另外如果是自动化专业的话傅里叶变换应该不成问题吧,激光原理可能要用到一点点。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.765秒