参考一下这篇文章网页链接
面试时,最重要的还是心态,不要紧张。
着装方面
(1)不要花费大量的时间和金钱去追求名牌,名牌没有达到好的效果时,还会适得其反,在面试官那里留下不好的印象,他们会觉得你不踏实。
(2)选择面试着装时,要根据你应聘职业的特性来决定,如银行、政府部门等会是比较正统的着装,公关和时尚杂质则需要你的面试着装有一定的流行因素。
(3)面试着装的干净整洁很重要,不要自以为是的去突出个性。
(4)对于应届生来说,企业会允许他们还保留学生气的打扮,应届生穿休闲类套装很合适,这样也可以为面试着装节省开支。
回顾总结
(1)面试一结束,应该对自己在面试时遇到的难题进行回顾。重新考虑一下,如果他们再一次向你提问时,该如何更好地回答这些问题。
(2)尽量把你参加面试的所有细节记下。一定要记下面试时与你交谈的人的名字和职位。
(3)万一通知你落选了,你也应该虚心地向招聘者请教你有哪些欠缺,以便今后改进。这样,就可以知道自己到底为什么落选。一般来说,能得到这样的反馈不容易,你应该好好抓住时机。
会后致谢
(1)在面试后的一、两天内,你可以给某个具体负责人写一封短信。在信里应该感谢他为你所花费的精力和时间,感谢他为你提供的各种信息。
(2)如果在一个星期内,或者依据他们做决策所需的一段合理时间之内没有得到任何音讯,你可以给负责人打个电话,问他"是否已经做出决定了?"这个电话可以表示出你的兴趣和热情。还可以从他的口气中听出你是否有希望得到那份工作。
(3)如果在打听情况时觉察出自己有希望中选,但最后决定尚未做出,那你过段时间后再打一次电话催催。
(4)每次打电话后,你还应该给对方寄封信。内容应该包括:
①重申你的优点;
②你对应聘职位仍然十分感兴趣;
③你能为公司的发展做出具体的贡献;
④你希望能早日听到公司的回音。
哪怕他们已经暗示你可能落选了,寄一封短信说明你即使没有成功但也很高兴有面试机会。这样做不仅仅是出于礼貌,而且还能使接见者在其公司出现另一个职位空缺时心里想着你,创造出一个潜在的求职机会。
第一题:
已知一边的斜率为根号3,与它平行的边的斜率也是根号3,与它相邻的两边的斜率是[-1/根号3]
为了后面叙述方便,设已知边为a,a边在中心Q的左边,于a平行的边为c,与a相邻的边,下方的为b,上方的为d
设a边直线方程为:y=(根号3)*x+m,写成一般式,(根号3)*x-y+m=0
因为边长为4,可以得到:Q到a边的距离是2。用点到直线距离公式
|(根号3)*1-(-1)+m|/[(根号3)^2+(-1)^2]=2,解这个方程可以得到两个m,这两个m分别是a边和c边的截距m。
同理,
设b边直线方程为:y=[-1/根号3]*x+n,用同样的方法可以计算出两个n,分别是b边和d边的截距n。
------------------
第二题:
首先画图,描点,难不到你吧
找到x轴和两个定点,发现两个点A(0,2)和B(1,1)都在x轴的上方,要在x轴上找一点P使得P到两点的距离之和最小,
如果A和B一点在x轴之上,另一点在x轴之下,利用两点间直线距离最小,可以和x轴相交于一点,就是我们要找的P了。但是现在A和B都在x轴之上,怎么办?
可以利用镜像原理,在x轴的下方找到A点的对称点AA(0,-2),线段连接AA和B,与x轴相交于P点,用AA和B来求出P点,P到AA的距离等于P到A的距离,所以,连接AA和B的线段的长度也就是题目要求的最小值,利用直线相交也就可以求出P点坐标了。
一、早在封建社会的中国历法把一昼夜分成一百刻再分十二时,每时八刻三十三秒三十三微三十三纤,永无尽数。而西方国家则把九十六刻分成十二时则无余数,方便计算。
二、旧中国的瓦房,房顶从正中央向房子前后两侧向下倾斜切都是呈现三角形状,三角形具有稳定性被运用在房屋的建设中;现在各种道路建筑桥梁等的建设更是离不开数学。
三、市内里的红绿灯,每隔多久红灯亮一次?一辆车在这段路上行驶时速多少,撞上红灯亮的次数才是最少?最节省时间?一层楼有多高?10米是多长?比你高的人是谁?比你矮的人是谁?和你差不多的是谁? 古今中外出现的很多关于数学与生活的故事,数学涉及的领域实在是太广了。
四、在经济学的应用:银行利率、股票的上涨与下跌、衣服打折等等。
银行存款分:整存整取、零存整取、定期存款、活期、国债这些存款形式各种各样,利率也有大有小,平时我们是这样计算利率的:本金*利率*时间=所得利息,然后还要从利息里扣除20%来上税(除国债外)之后剩下的80%的利息就是你自己应得的利息了。
五、工程师使用比例尺,为了让人们更好的了解这件东西;商农使用的四则计算,是为了更简单、准确的计算出该商品价值;制作各类统计表,是为了更好的统计资料,使人一看一目了然;使用百分数,是为了更好的计算出商品打折后的价钱及折扣率;
计算容积或体积而使用去尾法,是为了确保无误的让物品存放而不溢出;同一类单位换算,是为了方便我们的计算;使用代数代表运算定律和计算公式,是为了更方便地为研究和解决问题。
扩展资料:
数学源自数千年前人们的生产实践,自古以来就与人类的日常生活密不可分。著名的阿基米德发现的浮力原理,也是从生活中发现的。
传说希伦王召见阿基米德,让他鉴定纯金王冠是否掺假。他冥思苦想多日,在跨进澡盆洗澡时,从看见水面上升得到启示,作出了关于浮体问题的重大发现,并通过王冠排出的水量解决了国王的疑问。
在著名的《论浮体》一书中,他按照各种固体的形状和比重的变化来确定其浮于水中的位置,并且详细阐述和总结了后来闻名于世的阿基米德原理:放在液体中的物体受到向上的浮力,其大小等于物体所排开的液体重量。从此使人们对物体的沉浮有了科学的认识。
数学面试的范围可以作为参考:
1.学科知识的掌握和运用。掌握大学专科数学专业基础课程的知识、中学数学的知识。具有在初中数学教学实践中综合而有效地运用这些知识的能力。
2.初中数学课程知识的掌握和运用。理解初中数学课程的性质、基本理念和目标,熟悉《义务教育数学课程标准(2011年版)》(以下简称《课标》)规定的教学内容和要求。
3. 数学教学知识的掌握和应用。理解有关的数学教学知识,具有教学设计、教学实施和教学评价的能力。
考试内容模块与要求
学科知识
数学学科知识包括大学专科数学专业基础课程、高中数学课程中的必修内容和部分选修内容以及初中数学课程中的内容知识。
大学专科数学专业基础课程知识是指:数学分析、高等代数、解析几何、概率论与数理统计等大学专科数学课程中与中学数学密切相关的内容。
其内容要求是:准确掌握基本概念,熟练进行运算,并能够利用这些知识去解决中学数学的问题。
高中数学课程中的必修内容和部分选修内容以及初中数学课程知识是指高中数学课程中的必修内容、选修课中的系列1、2的内容以及选修3—1(数学史选讲),选修4—1(几何证明选讲)、选修4—2(矩阵与变换)、选修4—4(坐标系与参数方程)、选修4—5(不等式选讲)以及初中课程中的全部数学知识。
其内容要求是:理解中学数学中的重要概念,掌握中学数学中的重要公式、定理、法则等知识,掌握中学常见的数学思想方法,具有空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力以及综合运用能力。如有问题可以继续追问
例1、
题目:A地位于河流上游,B地位于河流下游,甲船从A地,乙船从B地,相向而行,12月起,两船有了新的发动机,速度变为原来的1.5倍,这时候相遇的地点与原来相比变化了1000米,12月6日,水流速度为原来的两倍,那么两船相遇的地点与12月2日相比变化了多少?
解答:
首先因为顺流是船速+水的速度,而逆流是船速-水的速度。水的速度一个加,一个减,相互抵消。
因此两船相遇所用的时间只与船速有关,与水的速度无关
那么当12月2日船速变成1.5倍时,所用的时间变成了原来的2/3
而此时顺流而下甲所走的实际距离如果不考虑水的话,因为速度变成了1.5倍,所以应该不变
而现在由于顺流,所以还要考虑水的速度。也就是说相遇的地点所移动的1000米就是水在原来的时间的1/3
内所走的距离
那么接下来水的速度变成原来的2倍,而这种情况还是那句话,时间只与船速有关,与水的速度无关,因此总时间仍然还是一开始时间的2/3,然后还是按照上面的方法去分析相遇点的移动:
甲的速度是船速+水的速度。时间不变,船速不变,那么相遇点的移动只和水的速度有关。这回是水的速度变成原来的两倍时间仍然是一开始时间的2/3,我们也分析了水在一开始的时间的1/3内所走的距离是1000米,所以这回相遇点移动了(2/3)/(1/3)*1000=2000米
数学(汉语拼音:shù xué;希腊语:μαθηματικ;英语:Mathematics),源自于古希腊语的μθημα(máthēma),其有学习、学问、科学之意。古希腊学者视其为哲学之起点,“学问的基础”。另外,还有个较狭隘且技术性的意义——“数学研究”。即使在其语源内,其形容词意义凡与学习有关的,亦会被用来指数学的。
其在英语的复数形式,及在法语中的复数形式+es成mathématiques,可溯至拉丁文的中性复数(Mathematica),由西塞罗译自希腊文复数τα μαθηματικά(ta mathēmatiká).
在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”).
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献.
基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态.
代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支.
直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分.
现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……).[1]
数学被应用在很多不同的领域上,包括科学、工程、医学和经济学等.数学在这些领域的应用一般被称为应用数学,有时亦会激起新的数学发现,并促成全新数学学科的发展.数学家也研究纯数学,也就是数学本身,而不以任何实际应用为目标.虽然有许多工作以研究纯数学为开端,但之后也许会发现合适的应用.
具体的,有用来探索由数学核心至其他领域上之间的连结的子领域:由逻辑、集合论(数学基础)、至不同科学的经验上的数学(应用数学)、以较近代的对于不确定性的研究(混沌、模糊数学)。
美丽的数学
今天中午,为了能把筷子体积测得更准确,我叫爸爸从化学室拿了一个细长的量筒,刻度单位更小,每个单位只有1立方厘米。此时,我似乎感觉到了胜利在向我招手,真可谓万事具备,只差动手实验了。
首先,我用铅笔在一次性筷子上划了一道分界线,将筷子平均分成两段,并用水浸泡,以免筷子在测定过程中洗水。随后,将筷子插入量筒中,并用滴管将水滴入量筒中,让量筒内的水涨到筷子的分界线上,记下量筒内的水位刻度(38毫升)后,将筷子从量筒内取出,再记下量筒内的水位刻度(34.5毫升),前后两次水位刻度之差就是这一部分筷子的体积,即3.5立方厘米。用同样的方法,我又测量了筷子另一部分的体积是5立方厘米,两次测定结果相加得到这双筷子的体积为8.5立方厘米。当我得到这个结果时,我兴奋地叫了,此时的我是多么自豪、多么骄傲啊!
接着,我又按每人一天使用3双计算出了我们学校(1500人)及全国(12亿)一年消耗的一次性筷子量,分别是13.96立方米和11169000立方米。结果使我大吃一惊,每年竟有这么多的木料做成一次性筷子被浪费了,真是太可惜!在此,我呼吁在校的同学,不!是全国人民,也不!应该是全世界的每个人都不要再使用一次性筷子了,只有这样,才能保护好我们的森林资源,使我们共有的地球环境更加美好,让地球上的每一个人呼吸到干净、清新的空气
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.601秒