一,位置
二,分数成法
1,分数成法(一)
2,分数成法(二)
3,分数成法(三)
4,解决问题(一)
5,解决问题(二)
6,倒数的认识
三,分数除法
1,分数除法(一)
2,分数除法(二)
3,分数除法(三)
4,解决问题(一)
5,解决问题(二)
6,比的意义
7,比的基本性质
8,比的应用
四,圆
1,认识圆(一)
2,认识圆(二)
3,圆的周长
4,圆的面积
五,百分数
1,百分数的意义
2,与小数的互化
3,与分数的互化
4,解决问题
5,折扣,纳税,利率
六,统计
建议你去网上搜一下,这几个网址里都有 给你一个样本: 人教版六年级数学上册知识点整理归纳 六年级上册数学知识点 第一单元 位置 1、什么是数对? ——数对:由两个数组成,中间用逗号隔开,用括号括起来。
括号里面的数由左至右为列数和行数,即“先列后行”。 作用:确定一个点的位置。
经度和纬度就是这个原理。 例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。
注:(1)在平面直角坐标系中X轴上的坐标表示列,y轴上的坐标表示行。如:数对(3,2)表示第三列,第二行。
(2)数对(X,5)的行号不变,表示一条横线,(5,Y)的列号不变,表示一条竖线。(有一个数不确定,不能确定一个点) ( 列 , 行 ) ↓ ↓ 竖排叫列 横排叫行 (从左往右看)(从下往上看) (从前往后看) 2、图形左右平移行数不变;图形上下平移列数不变。
3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。 第二单元 分数乘法 (一)分数乘法意义: 1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。 例如: *7表示: 求7个 的和是多少? 或表示: 的7倍是多少? 2、一个数乘分数的意义就是求一个数的几分之几是多少。
注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以) 例如: * 表示: 求 的 是多少? 9 * 表示: 求9的 是多少? A * 表示: 求a的 是多少? (二)分数乘法计算法则: 1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
注:(1)为了计算简便能约分的可先约分再计算。(整数和分母约分) (2)约分是用整数和下面的分母约掉最大公因数。
(整数千万不能与分母相乘,计算结果必须是最简分数) 2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母) 注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。 (3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。
(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数) (4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。 (三)积与因数的关系: 一个数(0除外)乘大于1的数,积大于这个数。
a*b=c,当b >1时,c>a. 一个数(0除外)乘小于1的数,积小于这个数。a*b=c,当b 1时,ca (a≠0 b≠0) ③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a 三、分数除法混合运算 1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序: ①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。 注:(a±b)÷c=a÷c±b÷c 四、比:两个数相除也叫两个数的比 1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
注:连比如:3:4:5读作:3比4比5 2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。 例:12∶20= =12÷20= =0.6 12∶20读作:12比20 注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。 3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
3、化简比:化简之后结果还是一个比,不是一个数。 (1)、用比的前项和后项同时除以它们的最大公约数。
(2)、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。
(3)、两个小数的比,向右移动小数点的位置,也是先化成整数比。 4、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
5、比和除法、分数的区别: 除法 被除数 除号(÷) 除数(不能为0) 商不变性质 除法是一种运算 分数 分子 分数线(——) 分母(不能为0) 分数的基本性质 分数是一个数 比 前项 比号(∶) 后项(不能为0) 比的基本性质 比表示两个数的关系 附:商不变性质:被除数和除数同时乘或除以相同的数(0除外),商不变。 分数的基本性质:分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
五、分数除法和比的应用 1、已知单位“1”的量用乘法。例:甲是乙的 ,乙是25,求甲是多少?即:甲=乙* (15* =9) 2、未知单位“1”的量用除法。
例: 甲是乙。
第一部分: 概念 1、加法交换律加法交换律加法交换律加法交换律::::两数相加交换加数的位置,和不变。
2、加法结合律加法结合律加法结合律加法结合律::::三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。 3、乘法交换律乘法交换律乘法交换律乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律乘法结合律乘法结合律乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。 5、乘法分配律乘法分配律乘法分配律乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)*5=2*5+4*5 6、除法的性质除法的性质除法的性质除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法简便乘法简便乘法简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。 7、什么叫等式等式等式等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质等式的基本性质等式的基本性质等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 8、什么叫方程式方程式方程式方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式一元一次方程式一元一次方程式一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。 学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。 10、分数分数分数分数::::把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则分数的加减法则分数的加减法则分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较分数大小的比较分数大小的比较分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数分数乘整数分数乘整数分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 14、分数乘分数分数乘分数分数乘分数分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数分数除以整数分数除以整数分数除以整数(0除外),等于分数乘以这个整数的倒数。 16、真分数真分数真分数真分数::::分子比分母小的分数叫做真分数。
17、假分数假分数假分数假分数::::分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数带分数带分数带分数:把假分数写成整数和真分数的形式,叫做带分数。 19、分数的基本性质分数的基本性质分数的基本性质分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。 21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
分数的加分数的加分数的加分数的加、、、、减法则减法则减法则减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
分数的乘法则分数的乘法则分数的乘法则分数的乘法则::::用分子的积做分子,用分母的积做分母。 22、什么叫比什么叫比什么叫比什么叫比:两个数相除就叫做两个数的比。
如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。 23、什么叫比例什么叫比例什么叫比例什么叫比例:表示两个比相等的式子叫做比例。
如3:6=9:18 24、比例的基本性质比例的基本性质比例的基本性质比例的基本性质:在比例里,两外项之积等于两内项之积。 25、解比例解比例解比例解比例:求比例中的未知项,叫做解比例。
如3:χ=9:18 26、正比例正比例正比例正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y 27、反比例反比例反比例反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
如:x*y = k( k一定)或k / x = y 28、百分数百分数百分数百分数::::表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
29、把小数化成百分数把小数化成百分数把小数化成百分数把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
30、把百分数化成小数把百分数化成小数把百分数化成小数把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。 31、把分数化成百分数把分数化成百分数把分数化成百分数把分数化成百分数,通常先把分数化成小数(除不尽时。
我有教案,上面有,你自己找吧,选我吧。
1.用数对表示物体的位置。
2.在方格纸上用数对确定位置。
分数乘整数的意义及计算方法 例1 分数乘整数的意义及计算方法
例2 分数乘整数的简便算法
分数乘分数的意义及计算方法 例3 分数乘分数的意义及计算方法
例4 分数乘分数的简便算法
运算定律、简便计算 例5 分数乘法的运算定律
例6 分数混合运算的简便计算
分数乘整数的意义及计算方法 例1 分数乘整数的意义及计算方法
例2 分数乘整数的简便算法
分数乘分数的意义及计算方法 例3 分数乘分数的意义及计算方法
例4 分数乘分数的简便算法
运算定律、简便计算 例5 分数乘法的运算定律
例6 分数混合运算的简便计算
例1 倒数的意义
例2 倒数的求法
例1 分数除法的意义
例2 分数除法的计算方法
例3
例4 分数四则混合运算例1 己知一个数的几分之几是多少,求这个数的问题
例2 稍复杂的己知一个数的几分之几是多少,求这个数的问题
第一小节 比的意义
第二小节 例1 比的基本性质
第三小节 例2 比的应用
认识圆 例1 用一般的物体画圆
例2 通过折圆的操作活动认识圆
用圆规画圆
例3 认识圆是轴对称图形
圆的周长 探索圆的周长公式、圆周率
例1 圆的周长的计算
圆的面积 探索圆的面积公式
例1 圆的面积计算
例2 圆形的面积计算
每份数*份数=总数
总数÷每份数=份数
总数÷份数=每份数
1倍数*倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
速度*时间=路程
路程÷速度=时间
路程÷时间=速度
单价*数量=总价
总价÷单价=数量
总价÷数量=单价
工作效率*工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
加数+加数=和
和-一个加数=另一个加数
被减数-减数=差
被减数-差=减数
差+减数=被减数
因数*因数=积
积÷一个因数=另一个因数
被除数÷除数=商
被除数÷商=除数
商*除数=被除数 小学数学图形计算公式
正方形 c周长 s面积 a边长 周长=边长*4 c=4a 面积=边长*边长 s=a*a
正方体 v体积 a棱长 表面积=棱长*棱长*6 s表=a*a*6 体积=棱长*棱长*棱长 v=a*a*a 3?? 长方形 c周长??s面积 a边长 周长=(长+宽)*2 c=2(a+b) 面积=长*宽 s=ab 4 长方体 v体积 s面积??a长??b 宽 h高 (1)表面积(长*宽+长*高+宽*高)*2 s=2(ab+ah+bh) (2)体积=长*宽*高 v=abh 5?? 三角形 s面积 a底 h高 面积=底*高÷2 s=ah÷2 三角形高=面积 *2÷底 三角形底=面积 *2÷高 平行四边形 s面积 a底 h高 面积=底*高 s=ah
梯形 s面积 a上底 b下底 h高 面积=(上底+下底)*高÷2 s=(a+b)* h÷2 8?? 圆形 s面积 c周长 ∏ d=直径 r=半径 (1)周长=直径*∏=2*∏?半径 c=∏d=2∏r (2)面积=半径*半径*∏ 9?? 圆柱体 v体积??h高?? s;底面积?? r底面半径 c底面周长 (1)侧面积=底面周长*高 (2)表面积=侧面积+底面积*2 (3)体积=底面积*高 (4)体积=侧面积÷2*半径
圆锥体 v体积 h高 s;底面积 r底面半径 体积=底面积*高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数*倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数*倍数=大数 (或 小数+差=大数) 植树问题 非封闭线路上的植树问题主要可分为以下三种情形 ⑴如果在非封闭线路的两端都要植树,那么 株数=段数+1=全长÷株距-1 全长=株距*(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么 株数=段数-1=全长÷株距-1 全长=株距*(株数+1) 株距=全长÷(株数+1) 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 相遇路程=速度和*相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差*追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量*100%=浓度 溶液的重量*浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本*100%=(售出价÷成本-1)*100% 涨跌金额=本金*涨跌百分比 折扣=实际售价÷原售价*100%(折扣
1到6年级数学公式1 .每份数*份数=总数 总数÷每份数=份数 总数÷份数=每份数 2. 1倍数*倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3. 速度*时间=路程 路程÷速度=时间 路程÷时间=速度 4. 单价*数量=总价 总价÷单价=数量 总价÷数量=单价 5. 工作效率*工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6 加数+加数=和 和-一个加数=另一个加数 7 被减数-减数=差 被减数-差=减数 差+减数=被减数 8 因数*因数=积 积÷一个因数=另一个因数 9 被除数÷除数=商 被除数÷商=除数 商*除数=被除数 小学数学图形计算公式 1. 正方形 C周长 S面积 a边长 周长=边长*4 C=4a 面积=边长*边长 S=a*a 2. 正方体 V:体积 a:棱长 表面积=棱长*棱长*6 S表=a*a*6 体积=棱长*棱长*棱长 V=a*a*a 3. 长方形 C周长 S面积 a边长 周长=(长+宽)*2 C=2(a+b) 面积=长*宽 S=ab 4 .长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积=(长*宽+长*高+宽*高)*2 S=2(ab+ah+bh) (2)体积=长*宽*高 V=abh 5 .三角形 s面积 a底 h高 面积=底*高÷2 s=ah÷2 三角形高=面积 *2÷底 三角形底=面积 *2÷高 6. 平行四边形 s面积 a底 h高 面积=底*高 s=ah 7. 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)*高÷2 s=(a+b)* h÷2 8 圆形 S面积 C周长 ∏ d=直径 r=半径 (1)周长=直径*∏=2*∏*半径 C=∏d=2∏r (2)面积=半径*半径*∏ 9. 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长*高 (2)表面积=侧面积+底面积*2 (3)体积=底面积*高 (4)体积=侧面积÷2*半径 10. 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积*高÷3 和差问题的公式; 总数÷总份数=平均数 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数*倍数=大数 (或者 和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数*倍数=大数 (或 小数+差=大数) 植树问题 :1. 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距*(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距*(株数+1) 株距=全长÷(株数+1) 2 封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距*株数 株距=全长÷株数 盈亏问题 :(盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇问题 :相遇路程=速度和*相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 :追及距离=速度差*追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 :顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 :溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量*100%=浓度 溶液的重量*浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题:利润=售出价-成本 利润率=利润÷成本*100%=(售出价÷成本-1)*100% 涨跌金额=本金*涨跌百分比 折扣=实际售价÷原售价*100%(折扣利息=本金*利率*时间 税后利息=本金*利率*时间*(1-20%)。
小学数学复习考试知识点汇总 一、小学生数学法则知识归类 (一)笔算两位数加法,要记三条 1、相同数位对齐; 2、从个位加起; 3、个位满10向十位进1。
(二)笔算两位数减法,要记三条 1、相同数位对齐; 2、从个位减起; 3、个位不够减从十位退1,在个位加10再减。 (三)混合运算计算法则 1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算; 2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减; 3、算式里有括号的要先算括号里面的。
(四)四位数的读法 1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推; 2、中间有一个0或两个0只读一个“零”; 3、末位不管有几个0都不读。 (五)四位数写法 1、从高位起,按照顺序写; 2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。
(六)四位数减法也要注意三条 1、相同数位对齐; 2、从个位减起; 3、哪一位数不够减,从前位退1,在本位加10再减。 (七)一位数乘多位数乘法法则 1、从个位起,用一位数依次乘多位数中的每一位数; 2、哪一位上乘得的积满几十就向前进几。
(八)除数是一位数的除法法则 1、从被除数高位除起,每次用除数先试除被除数的前一位数,如果它比除数小再试除前两位数; 2、除数除到哪一位,就把商写在那一位上面; 3、每求出一位商,余下的数必须比除数小。 (九)一个因数是两位数的乘法法则 1、先用两位数个位上的数去乘另一个因数,得数的末位和两位数个位对齐; 2、再用两位数的十位上的数去乘另一个因数,得数的末位和两位数十位对齐; 3、然后把两次乘得的数加起来。
(十)除数是两位数的除法法则 1、从被除数高位起,先用除数试除被除数前两位,如果它比除数小, 2、除到被除数的哪一位就在哪一位上面写商; 3、每求出一位商,余下的数必须比除数小。 (十一)万级数的读法法则 1、先读万级,再读个级; 2、万级的数要按个级的读法来读,再在后面加上一个“万”字; 3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。
(十二)多位数的读法法则 1、从高位起,一级一级往下读; 2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字; 3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。 (十三)小数大小的比较 比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。
(十四)小数加减法计算法则 计算小数加减法,先把小数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。 (十五)小数乘法的计算法则 计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。
(十六)除数是整数除法的法则 除数是整数的小数除法,按照整数除法的法则去除,商的小数点要和被除数小数点对齐,如果除到被除数的末尾仍有余数,就在余数后面添0再继续除。 (十七)除数是小数的除法运算法则 除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。
(十八)解答应用题步骤 1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么; 2、确定每一步该怎样算,列出算式,算出得数; 3、进行检验,写出答案。 (十九)列方程解应用题的一般步骤 1、弄清题意,找出未知数,并用X表示; 2、找出应用题中数量之间的相等关系,列方程; 3、解方程; 4、检验、写出答案。
(二十)同分母分数加减的法则 同分母分数相加减,分母不变,只把分子相加减。 (二十一)同分母带分数加减的法则 带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。
(二十二)异分母分数加减的法则 异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。 (二十三)分数乘以整数的计算法则 分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。
(二十四)分数乘以分数的计算法则 分数乘以分数,用分子相乘的积作分子,分母相乘的积作分母。 (二十五)一个数除以分数的计算法则 一个数除以分数,等于这个数乘以除数的倒数。
(二十六)把小数化成百分数和把百分数化成小数的方法 把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号; 把百分数化成小数,把百分号去掉,同时小数点向左移动两位。 (二十七)把分数化成百分数和把百分数化成分数的方法 把分数化成百分数,通常先把分数化成小数(除不尽通常保留三位小数),再把小数化成百分数; 把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。
二、小学数学口决定。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.961秒