原发布者:文交天下友YY
第一章磁学基础知识1.3磁性和磁性材料的分类1.3磁性和磁性材料的分类一、物质的磁性分类:抗磁性,顺磁性,反铁磁性,铁磁性,亚铁磁性(1)抗磁性:磁化率是数值很小的负数,量M级~10-5。大部分的绝缘体和一部分简单金属。OH抗磁性物质:惰性气体、许多有机化合物,部分金属(Bi,Zn,Ag和Mg等)、非金属(Si,P和S等)。(2)顺磁性:磁化率是数值比较小的正数,M量级10-3~10-6。顺磁性物质:大部分金属、稀土金属、铁族元素的盐类。OH(3)反铁磁性:这类材料的磁化率是小的正数。在温度低于反铁磁转变温度-Néel温度TN时,χ随温度的降低而下降,并且它的磁化率同磁场的取向有关;在温度高M于TN时,它的行为是顺磁性的,磁化率与温度的关系服从居里-外斯定律。反铁磁性物质:过渡族元素的盐类及化合物,如MnO、CoO等。OH(4)铁磁性:磁化率是特别大的正数,量级101~106。在某个临界温度TC以下,即使没有外加磁场,材料中也会产生自发的磁化强度。在高于TC的温度,它变成顺磁体,磁化率服从Curie-Weiss定律。11个纯元素晶体具有铁磁性:Fe,Co,Ni,Gd,Td,Dy,Ho,Er,Tm,面心立方Pr,和面心立方的Nd。(5)亚铁磁性:宏观磁性和铁磁性相同,量级100~103。在温度低于TC时的磁化率不如铁磁体那么大,它的自发磁化强度也没有铁磁体的大。典型的亚铁磁材料是铁氧体,如Fe3O4。二、五种磁性物质的磁化率-温度曲线抗磁性
磁铁的成分是铁、钴、镍等原子,其原子的内部结构比较特殊,本身就具有磁矩。磁铁能够产生磁场,具有吸引铁磁性物质如铁、镍、钴等金属的特性。
磁铁种类
1、形状类磁铁。方块磁铁、瓦形磁铁、异形磁铁、圆柱形磁铁、圆环磁铁、圆片磁铁、磁棒磁铁、磁力架磁铁。
2、属性类磁铁。钐钴磁体、钕铁硼磁铁(强力磁铁)、铁氧体磁铁、铝镍钴磁铁、铁铬钴磁铁。
3、行业类磁铁:磁性组件、电机磁铁、橡胶磁铁、塑磁等等种类。
4、磁铁分永久磁铁与软磁,永久磁铁是加上强磁,使磁性物质的自旋与电子角动量成固定方向排列,软磁则是加上电。
扩展资料:
磁铁的发现。
磁铁是天然的磁铁矿。古希腊人和中国人发现自然界中有种天然磁化的石头,称其为“吸铁石”。这种石头可以魔术般的吸起小块的铁片,而且在随意摆动后总是指向同一方向。
早期的航海者把这种磁铁作为其最早的指南针在海上来辨别方向。最早发现及使用磁铁的应该是中国人,也就是利用磁铁制作“指南针”,是中国四大发明之一。
经过千百年的发展,今天磁铁已成为我们生活中的强力材料。通过合成不同材料的合金可以达到与吸铁石相同的效果,而且还可以提高磁力。在18世纪就出现了人造的磁铁,但制造更强磁性材料的过程却十分缓慢,直到20世纪20年代制造出铝镍钴(Alnico)。
参考资料来源:百度百科-磁铁
1、磁性材料的磁化曲线
磁性材料是由铁磁性物质或亚铁磁性物质组成的,在外加磁场H 作用下,必有相应的磁化强度M 或磁感应强度B,它们随磁场强度H 的变化曲线称为磁化曲线(M~H或B~H曲线)。磁化曲线一般来说是非线性的,具有2个特点:磁饱和现象及磁滞现象。即当磁场强度H足够大时,磁化强度M达到一个确定的饱和值Ms,继续增大H,Ms保持不变;以及当材料的M值达到饱和后,外磁场H降低为零时,M并不恢复为零,而是沿MsMr曲线变化。材料的工作状态相当于M~H曲线或B~H曲线上的某一点,该点常称为工作点。
2.软磁材料的常用磁性能参数
饱和磁感应强度Bs:其大小取决于材料的成分,它所对应的物理状态是材料内部的磁化矢量整齐排列。
剩余磁感应强度Br:是磁滞回线上的特征参数,H回到0时的B值。
矩形比:Br∕Bs
矫顽力Hc:是表示材料磁化难易程度的量,取决于材料的成分及缺陷(杂质、应力等)。
磁导率μ:是磁滞回线上任何点所对应的B与H的比值,与器件工作状态密切相关。
初始磁导率μi、最大磁导率μm、微分磁导率μd、振幅磁导率μa、有效磁导率μe、脉冲磁导率μp。
居里温度Tc:铁磁物质的磁化强度随温度升高而下降,达到某一温度时,自发磁化消失,转变为顺磁性,该临界温度为居里温度。它确定了磁性器件工作的上限温度。
损耗P:磁滞损耗Ph及涡流损耗Pe P = Ph + Pe = af + bf2+ c Pe ∝ f2 t2 / ,ρ 降低,降低磁滞损耗Ph的方法是降低矫顽力Hc;降低涡流损耗Pe 的方法是减薄磁性材料的厚度t 及提高材料的电阻率ρ。在自由静止空气中磁芯的损耗与磁芯的温升关系为:总功率耗散(mW)/表面积(cm2)
3.软磁材料的磁性参数与器件的电气参数之间的转换
在设计软磁器件时,首先要根据电路的要求确定器件的电压~电流特性。器件的电压~电流特性与磁芯的几何形状及磁化状态密切相关。设计者必须熟悉材料的磁化过程并掌握材料的磁性参数与器件电气参数的转换关系。设计软磁器件通常包括三个步骤:正确选用磁性材料;合理确定磁芯的几何形状及尺寸;根据磁性参数要求,模拟磁芯的工作状态得到相应的电气参数。
磁铁成分是铁、钴、镍等原子结构特殊,原子本身具有磁矩,一般的这些矿物分子排列混乱。
磁区互相影响就显不出磁性,但是在外力(如磁场)导引下分子排列方向趋向一致,就显出磁性,也就是俗称的磁铁。铁,钴,镍,是最常用的磁性物质,基本上磁铁分永久磁铁与软铁,永久磁铁是加上强磁,使磁性物质的自旋与电子角动使磁性物质的自旋与电子角动量成固定方向排列,软磁则是加上电流(也是一种加上磁力的方法) 等电流去掉软铁会慢慢失去磁性。
磁铁不是人发明的,有天然的磁铁矿,最早发现及使用磁铁的应该是中国人。所以“指南针”是中国人四大发明之一。
磁铁是指可以产生磁场的物体或材质,通常用金属合金制成,具有强磁性。传统上可分作“永久性磁铁”与“非永久性磁铁”。
永久性磁铁可以是天然产物,又称天然磁石,也可以由人工制造(最强的磁铁是钕铁硼磁铁)。 非永久性磁铁加热到一定的温度会突然失去磁性,这是由于组成磁铁的众多“元磁体”之排列从有序到无序所引起的;失去磁性的磁铁放入到磁场中,当磁化强度达到某一数值,它又被磁化,“元磁体”之排列又从无序到有序 。
基本常识 : 古希腊人和中国人发现自然界中有种天然磁化的石头,称其为“吸铁石”。这种石头可以魔术般的吸起小块的铁片,而且在随意摆动后总是指向同一方向。
早期的航海者把这种磁铁作为其最早的指南针在海上来辨别方向。磁铁经过千百年的发展,今天磁铁已成为我们生活中的强力材料。
通过合成不同材料的合金可以达到与吸铁石相同的效果,而且还可以提高磁力。在18世纪就出现了人造的磁铁,但制造更强磁性材料的过程却十分缓慢,直到20世纪20年代制造出铝镍钴(Alnico)。
随后,20世纪50年代制造出了铁氧体(Ferrite),70年代制造出稀土磁铁[Rare Earth magnet 包括钕铁硼(NdFeB)和钐钴(SmCo)]。至此,磁学科技得到了飞速发展,强磁材料也使得元件更加小型化。
编辑本段磁化(取向)方向 大多数磁性材料可以沿同一方向充磁至饱和,这一方向叫做“磁化方向”(取向方向)。 大多数磁性材料可以沿同一方向充磁至饱和,这一方向叫做“磁化方向”(取向方向)。
没有取向方向的磁铁(也叫做各向同性磁铁)比取向磁铁(也叫各向异性磁铁)的磁性要弱很多。 什么是标准的“南北极”工业定义?[图]磁铁“北极”的定义是磁铁在随意旋转后它的北极指向地球的北极。
同样,磁铁的南极也指向地球的南极。 在没有标注的情况下如何辨别磁铁的北极? 很显然只凭眼睛是无法分辨的。
可以使用指南针贴近磁铁,指向地球北极的指针会指向磁铁的南极。 如何安全的处理和存放磁铁? 要始终十分小心,因为磁铁会自己吸附到一起,可能会夹伤手指。
磁铁相互吸附时也有可能会因碰撞而损坏磁铁本身(碰掉边角或撞出裂纹)。 将磁铁远离易被磁化的物品,如软盘,信用卡,电脑显示器,手表,手机,医疗器械等。
磁铁应远离心脏起搏器。 较大尺寸的磁铁,每片之间应加塑料或硬纸垫片以保证可以轻易地将磁铁分开。
磁铁应尽量存放在干燥,恒温的环境中。 如何做到隔磁? 只有能吸附到磁铁上的材料才 能起到隔断磁场的作用,而且材料越厚,隔磁的效果越好。
什么是最强的磁铁? 目前最高性能的磁铁是稀土类磁铁,而在稀土磁铁中钕铁硼是最强力的磁铁。但在200摄氏度以上的环境中,钐钴是最强力的磁铁。
编辑本段磁铁的种类[图]磁铁,应该叫磁钢,英文 Magnet,磁钢现在主要分两大类,一类是软磁,一类是硬磁; 软磁包括硅钢片和软磁铁芯;硬磁包括铝镍钴、钐钴、铁氧体和钕铁硼,这其中,最贵的是钐钴磁钢,最便宜的是铁氧体磁钢,性能最高的是钕铁硼磁钢,但是性能最稳定,温度系数最好的是铝镍钴磁钢,用户可以根据不同的需求选择不同的硬磁产品。
常见的磁性材料:
1、从性能上分为:硬磁和软磁
2、从材料和制造工艺上分:铁氧体(锰锌,镍锌) 铝镍钴(铸造,烧结) 铁铬钴(铸造,烧结) 钕铁硼(铸造,烧结,粘结) 钐钴 (铸造,烧结,粘结)橡胶磁(压延,注塑)钐铁氮(压延,注塑)铝铁碳(烧结)
3、从材料构成结构:普通,晶粒,纳米以及非晶
从耐温划分:常温磁铁 高温磁铁 低温磁铁
硬磁性材料(永磁体)指磁化后能长久保持磁性的材料 常见的有高碳钢,铝镍钴合金,钛钴合金,钡铁氧体等 还应用于磁记录,如录音磁带,录象磁带,电脑磁盘粉等。
软磁性材料指磁化后,不能保持原有的磁性。如软铁,硅钢,铁镍合金等。用来制造变压器,电磁铁等。
相关资料:
磁性是物质的基本性质之一,小到原子、分子,大到地球、太阳、宇宙,到处都有磁现象存在。
磁性材料常指具有强磁性的材料,这类材料在宏观上表现为在外加磁场下具有明显的磁化强度。微观上,物质的磁性本质上来源于组成它的原子、分子的磁矩。
分子电流与原子磁矩 1820年奥斯特发现电流磁效应后,安培指出,磁现象的本质是电流,物质的磁性来源于其中的分子电流。近代物理学研究表明,物质由原子构成,原子由带负电的电子和带正电的原子核构成,电子绕核运动。
电子和原子核都有自旋,这些都相当于某种电流,它们的总和构成原子或分子电流,这就是对安培分子电流假设的现代解释。 磁矩本是描绘闭合电流回路磁效应的强弱和方向的物理量,为了描绘原子或分子的磁性,引入电子轨道磁矩和电子自旋磁矩两个物理量,它们之和就是原子磁矩或分子磁矩,这就是原子或分子磁性的主要来源。
此外,原子核也有磁矩,但是很微弱,可忽略。原子按其固有磁矩是否为零,分为磁性原子和非磁性原子两类。
原子磁矩是外加磁场能与物质发生电磁相互作用的原因,也是物质磁性的来源。 在同一种仪器中,由于不同部分对磁性的要求不一样,往往需要选用不同的磁性材料。
以磁带录音机为例,记录声音的磁带是用磁粉制成的,由于希望将声音保存较长时间,故磁粉需用硬磁材料,以使它具有较大的矫顽力。对于将声音转化为磁场强度变化的磁头来说,要求它的磁性变化与声音的变化同步,所以磁头的铁芯要选用软磁性材料。
以使它具有很小的剩磁,且要求其磁导率较大。
磁性材料主要是指由过度元素铁,钴,镍极其合金等能够直接或见解产生磁性的物质.
磁性材料从材质和结构上讲,分为“金属及合金磁性材料”和“铁氧体磁性材料”两大类,铁氧体磁性材料又分为多晶结构和单晶结构材料。
从应用功能上讲,磁性材料分为:软磁材料、永磁材料、磁记录-矩磁材料、旋磁材料等等种类。软磁材料、永磁材料、磁记录-矩磁材料中既有金属材料又有铁氧体材料;而旋磁材料和高频软磁材料就只能是铁氧体材料了,因为金属在高频和微波频率下将产生巨大的涡流效应,导致金属磁性材料无法使用,而铁氧体的电阻率非常高,将有效的克服这一问题、得到广泛应用。
磁性材料从形态上讲。包括粉体材料、液体材料、块体材料 、薄膜材料等。
磁性材料的应用很广泛,可用于电声、电信、电表、电机中,还可作记忆元件、微波元件等。可用于记录语言、音乐、图像信息的磁带、计算机的磁性存储设备、乘客乘车的凭证和票价结算的磁性卡等。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.711秒